EAGER: A Data-Intensive Instrument for Strongly Correlated System Material Design
EAGER:用于强相关系统材料设计的数据密集型工具
基本信息
- 批准号:1342921
- 负责人:
- 金额:$ 29.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical Description:This award from the National Science Foundation to Rutgers University in New Brunswick is for the development of a new computer architecture with multiple levels of interconnected memory, optimized for the simulation of strongly correlated materials from first principles calculations. Strongly correlated materials have the potential to be transformative, two examples: thermoelectric materials, which can generate electricity from waste heat with high efficiency; and, superconductors with potential for higher critical temperatures, fields, and currents, which can revolutionize the electric grid by reducing transmission losses. The use of computational methods to accelerate the pace of discovery of materials with desirable properties is one of the greatest challenges in condensed matter science. Materials with strongly correlated electron systems are particularly difficult to simulat because their physical properties cannot be accurately represented in terms of a system of independent particles moving in an average potential, thus requiring new methodologies and powerful supercomputers for their theoretical description. Non-Technical Description:This award from the National Science Foundation to Rutgers University in New Brunswick is for the development of a new computer architecture optimized for the dsicovery of new materials from first principles calculations. The new computer will enable collaborations between material synthesis groups and computational physicists. The instrument will drive computer science research, will be used as a resource for teaching computational science and engineering at Rutgers, and will serve as a prototype for a future supercomputer in the national cyber-infrastructure.
技术描述:美国国家科学基金会授予新不伦瑞克的罗格斯大学的这一奖项是为了表彰一种新的计算机体系结构的开发,该体系结构具有多层互连的存储器,优化了对来自第一性原理计算的强关联材料的模拟。强关联材料具有变革的潜力,这是两个例子:热电材料,它可以高效地从废热中产生电力;以及超导体,它有可能产生更高的临界温度、场和电流,它可以通过降低传输损耗来彻底改变电网。使用计算方法加快发现具有理想性质的材料的速度是凝聚态科学中最大的挑战之一。具有强关联电子系统的材料特别难模拟,因为它们的物理性质不能用以平均势运动的独立粒子系统来准确表示,因此需要新的方法和强大的超级计算机来进行理论描述。非技术描述:美国国家科学基金会授予新不伦瑞克的罗格斯大学的这一奖项是为了表彰一种新的计算机体系结构的开发,该体系结构针对第一性原理计算中的新材料进行了优化。新的计算机将使材料合成小组和计算物理学家之间的合作成为可能。该仪器将推动计算机科学研究,将被用作罗格斯大学计算科学和工程教学的资源,并将作为国家网络基础设施中未来超级计算机的原型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Kotliar其他文献
Clean realization of Hund's physics near the Mott transition:
NiS2
under pressure
洪德物理学在莫特转变附近的清晰实现:压力下的 NiS2
- DOI:
10.1103/physrevb.109.045146 - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Ina Park;B. Jang;Dong Wook Kim;J. H. Shim;Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
A Tale of Two Phase Diagrams
- DOI:
10.1023/a:1013854927222 - 发表时间:
2002-02-01 - 期刊:
- 影响因子:1.400
- 作者:
Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
emPortobello/em - Quantum embedding in correlated materials made accessible
emPortobello/em - 使相关材料中的量子嵌入变得可及
- DOI:
10.1016/j.cpc.2023.108907 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:3.400
- 作者:
Ran Adler;Corey Melnick;Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
Optical spectroscopy and photoemission of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si13.gif" overflow="scroll" class="math"><mi mathvariant="normal">α</mi></math>- and <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si14.gif" overflow="scroll" class="math"><mi mathvariant="normal">γ</mi></math>-cerium from LDA+DMFT
- DOI:
10.1016/j.physb.2005.01.015 - 发表时间:
2005-04-30 - 期刊:
- 影响因子:
- 作者:
Kristjan Haule;Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
Deep learning-based superconductivity prediction and experimental tests
- DOI:
10.1140/epjp/s13360-024-05947-w - 发表时间:
2025-01-22 - 期刊:
- 影响因子:2.900
- 作者:
Daniel Kaplan;Adam Zheng;Joanna Blawat;Rongying Jin;Robert J. Cava;Viktor Oudovenko;Gabriel Kotliar;Anirvan M. Sengupta;Weiwei Xie - 通讯作者:
Weiwei Xie
Gabriel Kotliar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Kotliar', 18)}}的其他基金
DMREF/Collaborative Research: Designing, Understanding and Functionalizing Novel Superconductors and Magnetic Derivatives
DMREF/合作研究:新型超导体和磁性衍生物的设计、理解和功能化
- 批准号:
1435918 - 财政年份:2014
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
Collaborative ITR: Computational Design of Magnetic and Superconducting Transitions Based on Cluster DMFT Approach to Electronic Structure Calculation
协作 ITR:基于电子结构计算的簇 DMFT 方法的磁和超导转变的计算设计
- 批准号:
0606096 - 财政年份:2006
- 资助金额:
$ 29.72万 - 项目类别:
Continuing Grant
ITR: Computational Design of Strongly Correlated Materials Based on a Combination of the Dynamical Mean Field and the GW Methods
ITR:基于动态平均场和引力场方法相结合的强相关材料的计算设计
- 批准号:
0312478 - 财政年份:2003
- 资助金额:
$ 29.72万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Network Cluster of Advanced Workstations for First Principles Electronic Structure Calculations of Complex Materials
MRI:获取先进工作站网络集群,用于复杂材料的第一原理电子结构计算
- 批准号:
0116068 - 财政年份:2001
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
U.S.-Czech Materials Research on Many-Body Correlations in Calculations of Realistic Electronic Structure of Solids
美国-捷克材料研究在实际固体电子结构计算中的多体相关性
- 批准号:
9907893 - 财政年份:1999
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
- 批准号:
2346718 - 财政年份:2024
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
DynaSun - Dynamics Of The Solar Corona In The Era Of Data Intensive Observations
DynaSun - 数据密集观测时代的日冕动力学
- 批准号:
EP/Y037464/1 - 财政年份:2024
- 资助金额:
$ 29.72万 - 项目类别:
Research Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
- 批准号:
2342527 - 财政年份:2024
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
- 批准号:
2347627 - 财政年份:2024
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
- 批准号:
2348547 - 财政年份:2024
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
Dynamics of the solar corona in the era of data intensive observations (DynaSun)
数据密集观测时代的日冕动力学(DynaSun)
- 批准号:
EP/Y037456/1 - 财政年份:2024
- 资助金额:
$ 29.72万 - 项目类别:
Research Grant
CC* Networking Infrastructure: FAN4Science: Flow-Aware Networking for Data-Intensive Science
CC* 网络基础设施:FAN4Science:数据密集型科学的流感知网络
- 批准号:
2346681 - 财政年份:2024
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Continuing Grant
MCA Pilot PUI: Data Intensive Research Training (DIRT) in forecasting soil respiration at core terrestrial NEON sites
MCA 试点 PUI:预测陆地 NEON 核心站点土壤呼吸的数据密集型研究培训 (DIRT)
- 批准号:
2321958 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a HPC Cluster for Fostering Interdisciplinary Collaboration on AI-driven and Data-intensive Research and Education in West Tennessee
设备: MRI:第二轨道收购 HPC 集群,以促进田纳西州西部人工智能驱动和数据密集型研究和教育的跨学科合作
- 批准号:
2318210 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant














{{item.name}}会员




