CMG: When Sparse Meets Dense: New Mathematical Approximations Applied to Seismic Tomography
CMG:当稀疏遇到密集:应用于地震层析成像的新数学近似
基本信息
- 批准号:0530865
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project concerns the application of various so-called time-frequency (although in this context rather spatial localization/spatial frequency) techniques to seismic tomography, in order to capture both broad, smooth features and well-localized abrupt transitions or spiky features. In a first stage, the PIs plan to make a careful, stepwise study of the mathematical intricacies of the problem. They will construct appropriate wavelets or wavelet-like bases, and take advantage of the presently emerging understanding of how to characterize effectively data or structures that are sparse with respect to these bases. They expect that recent mathematical progress that shows simple, non-adaptive methods can give results comparable to fancier, adaptive techniques, at the cost of a logarithmic factor in the "size" of the problem, will help them in building a good approach in the next stage of the project, to attack first the direct, and then the inverse problem. In a second stage they hope to couple this with the ultrafast algorithms that are being developed by Gilbert, Muthukrishnan, Strauss and co-workers, and/or with the graph-diffusion technique and the associated multiresolution structure developed by Coifman, Laffont and Maggioni. The new techniques will be applied in ongoing global seismic tomography research projects as they are developed. Finally, they will develop the integral kernels for the inversion of seismic waveforms (as opposed to travel times) into a condensed wavelet basis. This is a crucial step in the partitioning of the three-dimensional problem of waveform tomography. It should allow them to split the (unmanageably) large and nonlinear inverse problem for N seismograms into N nonlinear optimization problems of manageable size. In seismic tomography, geophysicists seek to obtain information about hidden features of the Earth from a mathematical study of seismic waves excited by earthquakes or explosions, and recorded by a network of seismographs. This is to some extent similar to the more familiar CAT-scan tomography, in which doctors seek information on the inside of the body of a patient by taking transmitted X-ray pictures from many angles. Problems of this nature are called "inverse problems". Another inverse problem is the deblurring of images; for this problem, the wavelet transform, a recently developed mathematical tool, has shown to be particularly well adapted when the object one seeks to "reconstruct" can have sharp boundaries between regions that are otherwise smooth. Structures inside the Earth, such as subducting ocean floors or phase transitions, can likewise have sharp boundaries, whereas other variations in the physical properties may be distributed more smoothly. Wavelet techniques may therefore be particularly useful in seismic tomography as well. However, it is impossible to just transpose the image deblurring techniques to seismic tomography, because of the typically much larger size and greater complexity of the geophysical inverse problems, in which data can not be collected on a nice rectangular grid and large gaps in station coverage usually exist. The whole project will combine cutting edge applied mathematical techniques with new developments in the young field of finite frequency seismic tomography. The PIs expect that this collaboration between geophysical and mathematical investigators will eventually lead to sharper and more accurate images of the Earth's deep structure.
该项目涉及将各种所谓的时间-频率(虽然在这方面是空间定位/空间频率)技术应用于地震层析成像,以便捕捉广泛、平滑的特征和定位良好的突变或尖峰特征。在第一阶段,PI计划对问题的数学复杂性进行仔细的逐步研究。他们将构建适当的小波或小波基,并利用目前新兴的理解,如何有效地表征数据或结构,稀疏相对于这些基地。他们希望,最近的数学进展表明,简单的,非自适应的方法可以得到与更花哨的结果,自适应技术,在成本的对数因子的“大小”的问题,将有助于他们在建立一个良好的方法在下一阶段的项目,攻击第一个直接,然后逆问题。在第二阶段,他们希望将其与吉尔伯特、穆图克里希南、施特劳斯及其同事正在开发的超快算法相结合,或者与图扩散技术和Coifman、Laffont和Maggioni开发的相关多分辨率结构相结合。这些新技术将在开发完成后应用于正在进行的全球地震层析成像研究项目。 最后,他们将开发用于地震波形反演的积分核(与旅行时间相反)到压缩小波基中。这是波形层析成像的三维问题的划分中的关键步骤。它应该允许他们将N个地震图的(无法管理的)大型非线性逆问题分解为N个可管理大小的非线性优化问题。在地震层析成像中,地震学家试图从地震或爆炸激发的地震波的数学研究中获得有关地球隐藏特征的信息,并由地震仪网络记录。这在某种程度上类似于更熟悉的CAT扫描断层扫描,其中医生通过从多个角度拍摄透射X射线照片来寻找患者体内的信息。这种性质的问题被称为“逆问题”。另一个逆问题是图像的去模糊;对于这个问题,小波变换,最近开发的数学工具,已被证明是特别好地适应时,一个人试图“重建”的对象可以有尖锐的边界之间的区域,否则是光滑的。 地球内部的结构,如俯冲海底或相变,同样可以有尖锐的边界,而其他物理性质的变化可能分布得更平滑。因此,小波技术在地震层析成像中也可能特别有用。然而,这是不可能的,只是转的图像去模糊技术,地震层析成像,因为通常更大的规模和更大的复杂性的地球物理反演问题,其中的数据不能收集在一个很好的矩形网格和大的差距,在站覆盖通常存在。 整个项目将把联合收割机尖端应用数学技术与有限频率地震层析成像这一年轻领域的新发展结合起来。PI预计,地球物理和数学研究人员之间的这种合作最终将导致地球深层结构的更清晰,更准确的图像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ingrid Daubechies其他文献
One electron molecules with relativistic kinetic energy: Properties of the discrete spectrum
- DOI:
10.1007/bf01403885 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:2.600
- 作者:
Ingrid Daubechies - 通讯作者:
Ingrid Daubechies
Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis
- DOI:
10.1016/j.jcp.2005.06.005 - 发表时间:
2006-01-20 - 期刊:
- 影响因子:
- 作者:
Jing Zou;Anna Gilbert;Martin Strauss;Ingrid Daubechies - 通讯作者:
Ingrid Daubechies
Ingrid Daubechies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ingrid Daubechies', 18)}}的其他基金
New Approaches for Better Spatial Frequency Localization in Two- and Three-Dimensional Data Analysis
二维和三维数据分析中更好的空间频率定位的新方法
- 批准号:
1516988 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
CMG RESEARCH: Combining Adjoint Tomography and Sparse Imaging Methods in Seismology
CMG 研究:地震学中伴随断层扫描和稀疏成像方法的结合
- 批准号:
1025418 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
A New Initiative in Computational Mathematics at Princeton
普林斯顿大学计算数学的一项新举措
- 批准号:
0914892 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Algorithms for sparse data representations
FRG:协作研究:稀疏数据表示算法
- 批准号:
0354464 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Wavelets and Other Time-frequency Methods, and their Applications
小波和其他时频方法及其应用
- 批准号:
0245566 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR: Collaborative Research: Accurate Representations of Signals in a Coarse-Grained Environment
ITR:协作研究:粗粒度环境中信号的准确表示
- 批准号:
0219233 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Wavelets and Other Time-Frequency Methods, and their Applications
小波和其他时频方法及其应用
- 批准号:
0070689 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Wavelets: Theory and Application
数学科学:小波:理论与应用
- 批准号:
9401785 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Wavelets and Applications
数学科学:小波及其应用
- 批准号:
9209327 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
- 批准号:
2305659 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
The costs and benefits of an empty nest: A longitudinal study of couples' relationship functioning when children leave the home
空巢的成本和收益:对孩子离开家时夫妻关系运作的纵向研究
- 批准号:
2336235 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Open(ing up) goals in physical activity: What works, when, and for whom?
制定身体活动目标:什么有效、何时有效、对谁有效?
- 批准号:
DP240101163 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
脳神経回路の生後発達メカニズムの "When" の側面からの解明
从“何时”角度阐明脑神经回路的后天发育机制
- 批准号:
24H00586 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Was early Cenozoic Samoa and Rarotonga volcanism suppressed when the Ontong Java Plateau drifted over the hotspots?
合作研究:新生代早期的萨摩亚和拉罗汤加火山活动是否因翁通爪哇高原漂移到热点地区而受到抑制?
- 批准号:
2343989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
- 批准号:
2336804 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
- 批准号:
2336805 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
When does a supershedder become a superspreader?: The impact of individual-level heterogeneities on population-level transmission and spread
超级传播者何时成为超级传播者?:个体水平异质性对群体水平传播和传播的影响
- 批准号:
NE/X01424X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant