CMG RESEARCH: Combining Adjoint Tomography and Sparse Imaging Methods in Seismology

CMG 研究:地震学中伴随断层扫描和稀疏成像方法的结合

基本信息

  • 批准号:
    1025418
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

The focus of this project is on inverse problems in seismography. Inferring undergound structure from seismic measurements is a nonlinear problem that is also notoriously ill-posed. The PIs will tackle this problem in its full nonlinearity via the adjoint method, by iteratively minimizing a variational functional in which, at each iteration step, the nonlinear effects of the approximate solution are fully taken into account for the computations in the next iteration.To deal with the ill-posedness of the problem, they will use a regularization method that incorporates efficient modeling of spatial distributions that can exhibit discontinuities as well as smooth behavior between discontinuous transitions. More precisely, they will model the distribution as a sparse superposition of wavelets and curvelets, and add the sum of the absolute values of the corresponding expansion coefficients as a penalty term to the variational functional to be minimized. The inclusion of such a term enforces the sparseness of the expansion, thus expressing the smoothness of the model between discontinuous transitions, and has been proved to be regularizing. Computational resources have reached the speed and scale at which it is now feasible to use this approach for realistic problems.Seismology seeks to gain insight into underground geological structure by measurements done at the surface. When vibrational signals are sent into the ground (whether by earthquakes, carefully tailored explosions or specially constructed vibrators), they propagate at different speeds through layers of different constitution, and are reflected at the often abrupt transitions between different layers. The goal of seismology is to reconstruct the underground structure traversed by these seismic waves from the complex signals, registered by seismographs, that result from the multiple reflections and their interaction. The corresponding numerical problem is of such great complexity that it has been necessary, in the past, to simplify it so as to keep the problem feasible; this led, of necessity, to approximate solutions. The PIs will make use of recent mathematical advances that make it possible to model more effectively heterogeneous underground structures, and of the continuing progress in speed of computational resources to tackle the problem without having to introduce some of the restrictive simplifications used previously. This is expected to result in more accurate maps of underground structure.
这个项目的重点是地震学中的反问题。 从地震测量推断地下结构是一个非线性问题,也是众所周知的不适定。PI将通过伴随方法在完全非线性的情况下处理这个问题,通过迭代地最小化变分泛函,在每个迭代步骤中,近似解的非线性影响在下一次迭代的计算中被充分考虑。为了处理问题的不适定性,他们将使用一种正则化方法,该方法结合了空间分布的有效建模,该空间分布可以表现出不连续性以及不连续过渡之间的平滑行为。更准确地说,他们将分布建模为小波和曲波的稀疏叠加,并将相应展开系数的绝对值之和作为惩罚项添加到要最小化的变分泛函中。包含这样一个项加强了扩展的稀疏性,从而表达了模型在不连续过渡之间的平滑性,并且已被证明是正则化的。 计算资源的速度和规模已经达到了现在使用这种方法解决现实问题的可行性。地震学试图通过在地面进行测量来深入了解地下地质结构。当振动信号被发送到地面时(无论是通过地震,精心设计的爆炸还是特殊构造的振动器),它们以不同的速度通过不同构造的层传播,并在不同层之间的突然过渡处反射。地震学的目标是从地震仪记录的复杂信号中重建这些地震波穿过的地下结构,这些信号是由多次反射及其相互作用产生的。相应的数值问题是如此之大的复杂性,它一直是必要的,在过去,以简化它,以保持问题的可行性;这导致,必要的,近似的解决方案。PI将利用最新的数学进步,使其能够更有效地模拟异质地下结构,并在计算资源的速度方面不断取得进展,以解决这个问题,而不必引入以前使用的一些限制性简化。预计这将导致更准确的地下结构地图。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ingrid Daubechies其他文献

Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis
  • DOI:
    10.1016/j.jcp.2005.06.005
  • 发表时间:
    2006-01-20
  • 期刊:
  • 影响因子:
  • 作者:
    Jing Zou;Anna Gilbert;Martin Strauss;Ingrid Daubechies
  • 通讯作者:
    Ingrid Daubechies
One electron molecules with relativistic kinetic energy: Properties of the discrete spectrum

Ingrid Daubechies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ingrid Daubechies', 18)}}的其他基金

New Approaches for Better Spatial Frequency Localization in Two- and Three-Dimensional Data Analysis
二维和三维数据分析中更好的空间频率定位的新方法
  • 批准号:
    1516988
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
A New Initiative in Computational Mathematics at Princeton
普林斯顿大学计算数学的一项新举措
  • 批准号:
    0914892
  • 财政年份:
    2009
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CMG: When Sparse Meets Dense: New Mathematical Approximations Applied to Seismic Tomography
CMG:当稀疏遇到密集:应用于地震层析成像的新数学近似
  • 批准号:
    0530865
  • 财政年份:
    2005
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Algorithms for sparse data representations
FRG:协作研究:稀疏数据表示算法
  • 批准号:
    0354464
  • 财政年份:
    2004
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Wavelets and Other Time-frequency Methods, and their Applications
小波和其他时频方法及其应用
  • 批准号:
    0245566
  • 财政年份:
    2003
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: Accurate Representations of Signals in a Coarse-Grained Environment
ITR:协作研究:粗粒度环境中信号的准确表示
  • 批准号:
    0219233
  • 财政年份:
    2002
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Wavelets and Other Time-Frequency Methods, and their Applications
小波和其他时频方法及其应用
  • 批准号:
    0070689
  • 财政年份:
    2000
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Wavelets: Theory and Applications
小波:理论与应用
  • 批准号:
    9706753
  • 财政年份:
    1997
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Wavelets: Theory and Application
数学科学:小波:理论与应用
  • 批准号:
    9401785
  • 财政年份:
    1994
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Wavelets and Applications
数学科学:小波及其应用
  • 批准号:
    9209327
  • 财政年份:
    1992
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Co-creating digital education about parenting and father-inclusive practice: combining QL impact research and commercialisation for the social good
共同创建有关育儿和父亲包容性实践的数字教育:将 QL 影响研究与商业化相结合,造福社会
  • 批准号:
    MR/Y00356X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Fellowship
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Combining Separation, Digestion, and Ionization on a Mass Spectrometry Cartridge to Enable Biomedical Research on Proteoforms
在质谱柱上结合分离、消化和电离,以实现蛋白质形式的生物医学研究
  • 批准号:
    10637225
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
  • 批准号:
    2309825
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
RESEARCH-PGR: Combining machine learning and experimental analysis to define trichome and root-specific gene regulatory networks in cultivated tomato and related Solanaceae species
RESEARCH-PGR:结合机器学习和实验分析来定义栽培番茄和相关茄科物种中的毛状体和根特异性基因调控网络
  • 批准号:
    2218206
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Galaxy and Cosmic Microwave Background Surveys for Precise and Robust Constraints on Cosmology
合作研究:结合星系和宇宙微波背景调查对宇宙学进行精确和稳健的约束
  • 批准号:
    2306166
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Galaxy and Cosmic Microwave Background Surveys for Precise and Robust Constraints on Cosmology
合作研究:结合星系和宇宙微波背景调查对宇宙学进行精确和稳健的约束
  • 批准号:
    2306165
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Research and development of an interactive program for the visually impaired to improve 3D tactile perceptional abilities combining polyhedron unit in silver ratio, which is called, "INFORMART"
研究开发了一种针对视障人士的互动程序,以提高3D触觉感知能力,结合银比例的多面体单元,称为“INFORMART”
  • 批准号:
    23H00064
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
  • 批准号:
    2223133
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了