Mathematical Modeling and Control of Plasmas in Magnetic Fusion

磁聚变中等离子体的数学建模和控制

基本信息

  • 批准号:
    0532636
  • 负责人:
  • 金额:
    $ 1.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this workshop is to initiate a dialogue between tokamak fusion physicists and engineers, and specialists in mathematical control theory, with the intended outcome of starting collaborative efforts to solve some of the many mathematical modeling and control problems that will arise in the International Thermonuclear Experimental Reactor (ITER) over the next 5-10 years. The ITER tokamak, an international $5 billion project that includes the European Union, the People's Republic of China, the Republic of Korea, the Russian Federation, Japan, and the United States, will confine a mixture of ionized isotopes of hydrogen, also known as plasma, at a temperature of around 100 million degrees centigrade, fusing the isotopes of hydrogen into helium and converting some of the matter involved in the reaction into a much larger amount of energy. Control researchers will receive a good general overview of the major objectives of fusion research and obtain a basic understanding of the many control problems that must be solved to achieve those objectives. Fusion scientists will obtain an improved understanding of available control technologies and expertise with some feeling for how applicable these techniques are to their own control problems. Both communities will learn what is needed to initiate a collaborative activity. The workshop will consist of two days of presentations and discussion. Day 1 will provide an overview of tokamak fusion and the associated control problems. Day 2 will provide a selected cross-section of state-of the art mathematical control theories, which may be beneficial in fusion control problems. A tour of the DIII-D tokamak and fusion facility will be provided to enhance the learning experience for control researchers.At the present rate of energy use, and considering the estimate of world population growth, experts predict an energy shortfall in less than fifty years. Although the accuracy of this prediction can be discussed, it is a fact that fossil fuel energy is becoming more expensive and polluting. The need for new sources of energy to supply this shortfall will become a critical problem in the near future. As a source of energy, fusion would have many advantages: abundant fuel supply, no risk of nuclear accident, no air pollution, no high-level nuclear waste, and no generation of nuclear weapon materials. There is consensus in the fusion community that active control will be one of the key enabling technologies. With further advancements in reduced-order fusion modeling, advances in control systems for fusion will continue, including vertical and shape control, kinetic and current profile control, MHD (magnetohydrodynamic) stabilization and plasma transport reduction. The visibility that this workshop will give to the problem of fusion plasma control will attract high quality mathematicians and engineers to work on this important topic. As one outcome of this workshop, a large number of challenging problems will become known to graduate students in mathematics, physics, and controls. The large number of problems, their importance to the welfare of society as a whole, and their challenging nature can provide a focused objective for development of many new and interesting mathematical control techniques.
本次研讨会的目的是启动托卡马克聚变物理学家和工程师之间的对话,并在数学控制理论的专家,与预期的结果开始合作努力,以解决一些许多数学建模和控制问题,将出现在国际热核聚变实验反应堆(ITER)在未来5-10年。 ITER托卡马克是一个国际性的50亿美元项目,包括欧盟、中华人民共和国、大韩民国、俄罗斯联邦、日本和美国,将把氢的电离同位素混合物,也称为等离子体,限制在大约1亿摄氏度的温度下,将氢的同位素融合成氦,并将反应中的一些物质转化为更大的能量。控制研究人员将收到一个很好的总体概述的主要目标的融合研究,并获得了基本的理解,必须解决的许多控制问题,以实现这些目标。 聚变科学家将获得对现有控制技术和专业知识的更好理解,并对这些技术如何适用于他们自己的控制问题有一定的感觉。 两个社区都将学习发起合作活动所需的内容。研讨会将包括两天的演讲和讨论。 第一天将概述托卡马克聚变和相关的控制问题。 第2天将提供一个选定的横截面的最先进的数学控制理论,这可能是有益的融合控制问题。 将提供DIII-D托卡马克和聚变设施的参观,以增强控制研究人员的学习经验。以目前的能源使用速度,并考虑到世界人口增长的估计,专家预测能源短缺在不到50年。虽然这一预测的准确性可以讨论,但化石燃料能源变得越来越昂贵和污染是事实。在不久的将来,对新能源的需求将成为一个关键问题。作为一种能源,聚变有许多优点:燃料供应充足,没有核事故的风险,没有空气污染,没有高放射性核废料,不产生核武器材料。在核聚变领域,人们一致认为,主动控制将是关键的使能技术之一。随着降阶聚变建模的进一步发展,聚变控制系统的进步将继续下去,包括垂直和形状控制,动力学和电流分布控制,磁流体动力学(MHD)稳定和等离子体输运减少。这次研讨会将使聚变等离子体控制问题的可见性将吸引高素质的数学家和工程师致力于这一重要课题。作为本次研讨会的成果之一,大量具有挑战性的问题将成为已知的数学,物理和控制的研究生。大量的问题,他们的福利的重要性,社会作为一个整体,他们的挑战性,可以提供一个重点目标的发展,许多新的和有趣的数学控制技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eugenio Schuster-Rosa其他文献

Eugenio Schuster-Rosa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eugenio Schuster-Rosa', 18)}}的其他基金

Collaborative Research: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles
合作研究:通过径向等离子体流轮廓整形控制湍流传输的数值和实验研究
  • 批准号:
    0903803
  • 财政年份:
    2009
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Control of Plasmas in Nuclear Fusion
职业:核聚变中等离子体的非线性控制
  • 批准号:
    0645086
  • 财政年份:
    2007
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
  • 批准号:
    10741703
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
RFA-CK-22-008, Building Next-generation Mathematical Biology Modeling Workforce for HAI Control
RFA-CK-22-008,为 HAI 控制构建下一代数学生物学建模队伍
  • 批准号:
    10704732
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
RFA-CK-22-008, Building Next-generation Mathematical Biology Modeling Workforce for HAI Control
RFA-CK-22-008,为 HAI 控制构建下一代数学生物学建模队伍
  • 批准号:
    10617887
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
Mathematical modeling and adaptive control to inform real time decision making for the COVID-19 pandemic at the local, regional and national scale
数学建模和自适应控制为地方、区域和国家范围内的 COVID-19 大流行的实时决策提供信息
  • 批准号:
    MR/V009761/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Research Grant
DNA-methylation pattern formation: mechanistic analysis and mathematical modeling of epigenetic control (C02)
DNA甲基化模式形成:表观遗传控制的机制分析和数学建模(C02)
  • 批准号:
    228323697
  • 财政年份:
    2013
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Collaborative Research Centres
Estimating female sex workers' early HIV risk and the implications for HIV epidemic control: A multi-country observational and mathematical modeling study
估计女性性工作者的早期艾滋病毒风险及其对艾滋病毒流行控制的影响:一项多国观察和数学模型研究
  • 批准号:
    280120
  • 财政年份:
    2013
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Operating Grants
Improving influenza pandemic control through simulation and mathematical modeling
通过模拟和数学建模改善流感大流行的控制
  • 批准号:
    257270
  • 财政年份:
    2012
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Miscellaneous Programs
Foveal and peripheral influences on the control of gaze and attention during scene perception: Experiments and mathematical modeling
中央凹和周边对场景感知过程中注视和注意力控制的影响:实验和数学建模
  • 批准号:
    221217560
  • 财政年份:
    2012
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Research Grants
Mathematical and Statistical Modeling of Mycobacterial Disease Control
分枝杆菌疾病控制的数学和统计模型
  • 批准号:
    8831014
  • 财政年份:
    2011
  • 资助金额:
    $ 1.5万
  • 项目类别:
Mathematical and Statistical Modeling of Mycobacterial Disease Control
分枝杆菌疾病控制的数学和统计模型
  • 批准号:
    8956767
  • 财政年份:
    2011
  • 资助金额:
    $ 1.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了