Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
基本信息
- 批准号:10741703
- 负责人:
- 金额:$ 20.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAlgorithmsAntiviral AgentsBK VirusCalibrationCharacteristicsChildhoodClinicalClinical DataClinical ManagementClinical TreatmentClinical TrialsCollaborationsCommunicable DiseasesComplexConsensusCoupledCreatinineCytotoxic T-LymphocytesDataData AnalysesData ScienceData SetData SourcesDevelopmentDifferential EquationDoseEffectivenessEnsureEquationFundingGoalsGraft RejectionHumanImmuneImmune responseImmunologicsImmunologyImmunosuppressionImmunosuppressive AgentsIncidenceInfectionInterventionKidneyKidney Cell InfectionKidney DiseasesKidney TransplantationKnowledgeLaboratoriesLeadLearningLiteratureMachine LearningMathematicsMeasurementMeasuresMediatingModelingModernizationMonitorMorbidity - disease rateNational Institute of Allergy and Infectious DiseaseOpportunistic InfectionsOrganOrgan TransplantationOutcomeOutputPatient CarePatient-Focused OutcomesPatientsPharmaceutical PreparationsPhysiciansProliferatingPublishingRegimenResearchRiskSample SizeScheduleSoftware ToolsSolidSpecific qualifier valueStatistical MethodsSystemTestingTherapeutic immunosuppressionTimeTranslatingTransplant RecipientsTransplantationTransplantation and Immune SystemUnited States National Institutes of HealthValidationViralViral Load resultViremiaVirusVirus DiseasesWithdrawalWorkallograft rejectionclinical practicecontrol theorycostdesigndosagedynamic systemexperienceflexibilitygraft functionimmunoregulationimprovedindividual patientinnovationkidney cellmathematical modelmodel developmentneural networknoveloptimal control theorypersonalized managementpersonalized medicinepost-transplantpredictive modelingrenal damagesoftware developmentstandard of caretooltransplant centers
项目摘要
BK virus (BKV) infection and nephropathy is a major cause of organ loss following kidney transplantation. There
are no effective antivirals for BKV, and standard clinical practice is to reduce immunosuppression, which raises
the risk of allograft rejection. There is no consensus on how to safely reduce immunosuppression, and treatment
of BKV viremia varies by the attending physician and transplant center. To address this gap in our knowledge
for how to optimally manage kidney transplant recipients with BKV viremia, we propose to use mathematical
modeling and optimal control theory to develop software-guided management of immunosuppression
personalize for individual patients. To translate these models and algorithms to clinical reactive, we need to
calibrate and validate them on longitudinal data of kidney transplant recipients with BKV viremia. We propose to
utilize NIAID-funded Clinical Trials in Organ Transplantation (CTOT) data sets available in ImmPort, together
with pediatric and adult CTOT kidney transplant data not currently in ImmPort, to build the largest longitudinal
BKV monitoring data set and use it to calibrate our models. We build this proposed work on our published
mathematical model of BKV viremia, which accurately models BKV proliferation and infection of kidney cells, the
elicitation of anti-viral and allo-specific cytotoxic T cells that damage kidney cells and reduce graft function, and
the non-replenishment of damaged kidney cells resulting in rising creatinine levels. We propose to extend and
refine the model to fit the longitudinal clinical data from CTOT kidney transplant recipients with BKV viremia more
accurately. To better utilize the extensive patient data from the CTOT studies, we also propose an innovative
approach to build a more accurate BKV model by learning the equations describing immune regulation directly
from data. Learning will be performed using a neural network emulator, which can approximate arbitrarily
complex mathematical functions. This machine learning approach has the advantage of being more flexible and
using ancillary data sources that allow a greater degree of personalized model characterization. The CTOT data
will be used to inform immune response modeling and to validate the initial model refinements as well as assist
us in further model development. We then layer receding horizon control (RHC) algorithms, also known as model
predictive control, on top of the mathematical models, to provide adaptive guidance on optimal
immunosuppression doses customized to individual patients. The calibration of these models is critical, and a
critical component of our proposal is the use advanced statistical methods to estimate model parameters from
sparse longitudinal data and to perform sensitivity analysis. Finally, the proposal benefits immensely from the
collaboration of three experienced clinicians who manage kidney transplant recipients, who will provide domain
expertise, help with the interpretation of data, and guide model and software development to ensure clinical
utility. The expected outcome is a useful tool to guide immunosuppressive management that could be tested for
its effectiveness in improving patient outcomes and reducing the morbidity of immunosuppressive therapy.
BK病毒(BKV)感染和肾病是肾移植后器官丢失的主要原因。那里
对BKV没有有效的抗病毒药物,标准的临床实践是减少免疫抑制,这增加了
同种异体移植排斥的风险。对于如何安全地减少免疫抑制和治疗,还没有达成共识。
BKV病毒血症的发生率因主治医生和移植中心而异。为了弥补我们知识中的这一鸿沟
对于如何最佳地处理患有BKV病毒血症的肾移植患者,我们建议使用数学方法
建模和最优控制理论用于开发软件指导的免疫抑制管理
为个别患者量身定制。为了将这些模型和算法转化为临床反应,我们需要
对患有BKV病毒血症的肾移植受者的纵向数据进行校正和验证。我们建议
共同利用ImmPort上提供的NIAID资助的器官移植临床试验(CTOT)数据集
与儿童和成人CTOT肾移植数据目前不在ImmPort,以建立最大的纵向
BKV监测数据集,并使用它来校准我们的模型。我们将这项拟议的工作建立在我们已出版的
BKV病毒血症的数学模型,它准确地模拟了BKV的增殖和肾脏细胞的感染,
诱导抗病毒和同种异体特异性细胞毒T细胞,破坏肾脏细胞,降低移植肾功能;
受损的肾脏细胞不能得到补充,从而导致肌酐水平升高。我们建议延长和
改进模型以适应CTOT肾移植受者合并BKV病毒血症的纵向临床数据
准确地说。为了更好地利用来自CTOT研究的大量患者数据,我们还提出了一种创新的
通过直接学习免疫调节方程建立更准确的BKV模型的方法
从数据中。学习将使用神经网络仿真器进行,该仿真器可以任意逼近
复杂的数学函数。这种机器学习方法的优点是更灵活和
使用允许更大程度的个性化模型表征的辅助数据源。CTOT数据
将用于通知免疫反应建模和验证初始模型的改进以及辅助
美国在进一步的模型开发中。然后我们提出分层滚动时间域控制(RHC)算法,也称为模型
预测控制,在数学模型的基础上,提供最优的自适应指导
针对个别患者定制的免疫抑制剂量。这些模型的校准是至关重要的,并且
我们建议的关键部分是使用先进的统计方法来估计模型参数
稀疏纵向数据,并执行敏感性分析。最后,该提案极大地受益于
管理肾移植受者的三名经验丰富的临床医生的合作,他们将提供域
专业知识,帮助解释数据,指导模型和软件开发,以确保临床
实用程序。预期的结果是一个有用的工具来指导免疫抑制治疗,可以测试
它在改善患者预后和降低免疫抑制治疗的发病率方面的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JANICE MARIE MCCARTHY其他文献
JANICE MARIE MCCARTHY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)