Exploiting Multimodel Synergy for Large Scale and Diverse Image Retrieval in Digital Archives
利用多模型协同作用进行数字档案中的大规模和多样化图像检索
基本信息
- 批准号:0535162
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-15 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is advance the state-of-the-art in image retrieval by explicitly addressing two issues: the semantic gap and the scalability. The semantic gap is related to the retrieval effectiveness, e.g., being able to use natural language to describe the images of interest, rather than having to specify low-level features, such as color histograms. The scalability refers to both the diversity in image content and quality and the number of images in the database. The specific approach consists of using probabilistic models and novel co-clustering techniques to explicitly exploit the synergy between multiple modalities typically co-existing in many real world image retrieval applications. Broader impact includes a series of innovative community outreach activities. The results of this research project will be incorporated into the development of image search engines and K-12 learning tools in two non-profit education and service organizations. The specific scenarios include a museum and a botanical garden, with a direct benefit to the communities and the society these organizations provide services to. Knowledge dissemination includes providing learning and research experience to students involved in the project. In addition, the organizations' technical personnel will provide expertise to develop useful services to the communities and society, will help in validating the results and also benefit from involvement in the project. The project Web site (http://www.fortune.binghamton.edu/ir.htm) will be used to disseminate further information and results.
该项目的目标是通过明确解决两个问题:语义差距和可扩展性来推进图像检索的最新发展。语义鸿沟与检索的有效性有关,例如,能够使用自然语言来描述感兴趣的图像,而不必指定低级特征,例如颜色直方图。可伸缩性是指图像内容和质量的多样性以及数据库中图像的数量。具体的方法包括使用概率模型和新的共聚类技术,明确利用通常共存于许多真实的世界的图像检索应用程序之间的协同作用。更广泛的影响包括一系列创新的社区外联活动。该研究项目的成果将被纳入两个非营利性教育和服务机构的图像搜索引擎和K-12学习工具的开发中。具体方案包括博物馆和植物园,这些组织提供服务的社区和社会直接受益。知识传播包括向参与项目的学生提供学习和研究经验。此外,各组织的技术人员将提供专门知识,为社区和社会提供有益的服务,帮助验证结果,并从参与项目中受益。该项目的网址(http://www.fortune.binghamton.edu/ir.htm)将用于传播进一步的信息和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
                item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ patent.updateTime }}
Zhongfei Zhang其他文献
Marginal Fisher Regression Classification for Face Recognition
人脸识别的边际费舍尔回归分类
- DOI:10.1007/978-3-319-24075-6_44 
- 发表时间:2015 
- 期刊:
- 影响因子:0
- 作者:Zhong Ji;Yunlong Yu;Yanwei Pang;Yingming Li;Zhongfei Zhang 
- 通讯作者:Zhongfei Zhang 
Other Chemical Hazards
其他化学危害
- DOI:
- 发表时间:2019 
- 期刊:
- 影响因子:0
- 作者:Lijuan Du;Guoren Huang;Puyu Yang;Zhongfei Zhang;Lu Yu;Yaqiong Zhang;Boyan Gao 
- 通讯作者:Boyan Gao 
"Automatic" multimodal medical image fusion
“自动”多模态医学图像融合
- DOI:
- 发表时间:2003 
- 期刊:
- 影响因子:0
- 作者:Zhongfei Zhang;Jian Yao;S. Bajwa;T. Gudas 
- 通讯作者:T. Gudas 
Dietary Intake of Structured Lipids with Different Contents of Medium-Chain Fatty Acids on Obesity Prevention in C57BL/6J Mice.
膳食摄入不同中链脂肪酸含量的结构脂质对 C57BL/6J 小鼠肥胖的预防作用。
- DOI:
- 发表时间:2017 
- 期刊:
- 影响因子:3.9
- 作者:Shengmin Zhou;Yueqiang Wang;Yuanrong Jiang;Zhongfei Zhang;Xiangjun Sun;L. Yu 
- 通讯作者:L. Yu 
Using data mining techniques for building fusion models
使用数据挖掘技术构建融合模型
- DOI:10.1117/12.487024 
- 发表时间:2003 
- 期刊:
- 影响因子:0
- 作者:Zhongfei Zhang;J. Salerno;Maureen A. Regan;Debra A. Cutler 
- 通讯作者:Debra A. Cutler 
Zhongfei Zhang的其他文献
{{
              item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
{{ truncateString('Zhongfei Zhang', 18)}}的其他基金
DC:Small: Collaborative Research: Data Intensive Computing for General Relational Data Learning
DC:Small:协作研究:用于一般关系数据学习的数据密集型计算
- 批准号:1017828 
- 财政年份:2010
- 资助金额:-- 
- 项目类别:Standard Grant 
International Workshop on Connected Multimedia
互联多媒体国际研讨会
- 批准号:0956924 
- 财政年份:2009
- 资助金额:-- 
- 项目类别:Standard Grant 
III-COR-Small: Relational Data Community Discovery and Learning
III-COR-Small:关系数据社区发现和学习
- 批准号:0812114 
- 财政年份:2009
- 资助金额:-- 
- 项目类别:Standard Grant 
相似海外基金
eXtreme EuRopean drOughtS: multimodel synthesis of past, present and future events
欧洲极端干旱:过去、现在和未来事件的多模型综合
- 批准号:412863158 
- 财政年份:2019
- 资助金额:-- 
- 项目类别:Research Grants 
Extension of Real-Time Optimisation Using a MultiModel Approach in Conjunction with Evolutionary Algorithms as to Adapt the Structure of These Models
使用多模型方法结合进化算法扩展实时优化以适应这些模型的结构
- 批准号:2103878 
- 财政年份:2018
- 资助金额:-- 
- 项目类别:Studentship 
Collaborative Research: Multimodel Bayesian Data-Worth Analysis for Groundwater Remediation Design
合作研究:地下水修复设计的多模型贝叶斯数据价值分析
- 批准号:1552329 
- 财政年份:2016
- 资助金额:-- 
- 项目类别:Standard Grant 
Collaborative Research: Multimodel Bayesian Data-Worth Analysis for Groundwater Remediation Design
合作研究:地下水修复设计的多模型贝叶斯数据价值分析
- 批准号:1552351 
- 财政年份:2016
- 资助金额:-- 
- 项目类别:Standard Grant 
Multimodel Assessment of Social Process Systems across Neurodevelopmental Disorders
跨神经发育障碍的社会过程系统的多模型评估
- 批准号:9109048 
- 财政年份:2015
- 资助金额:-- 
- 项目类别:
Multimodel Assessment of Social Process Systems across Neurodevelopmental Disorders
跨神经发育障碍的社会过程系统的多模型评估
- 批准号:8941981 
- 财政年份:2015
- 资助金额:-- 
- 项目类别:
Development of Multimodel Pain Treatment using Nanotechnology &  Power Assist
利用纳米技术开发多模式疼痛治疗
- 批准号:25670664 
- 财政年份:2013
- 资助金额:-- 
- 项目类别:Grant-in-Aid for Challenging Exploratory Research 
Multimodel phenotyping to predict oral appliance treatment outcome in obstructive sleep apnoea
多模型表型预测阻塞性睡眠呼吸暂停口腔矫治器治疗结果
- 批准号:nhmrc : 1024351 
- 财政年份:2012
- 资助金额:-- 
- 项目类别:Project Grants 

 刷新
              刷新
            
















 {{item.name}}会员
              {{item.name}}会员
            



