Multimodel Spaces for Robust Inference
用于稳健推理的多模型空间
基本信息
- 批准号:8592200
- 负责人:
- 金额:$ 28.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-20 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsApplied ResearchAttention deficit hyperactivity disorderClassificationClinical SciencesClinical TrialsCollectionCommunitiesComputer softwareConfidence IntervalsDataData AnalysesData SetDevelopmentDiagnosisDisciplineDiseaseDocumentationEconomicsEffectivenessEnsureEpidemiologyEvaluationFeasibility StudiesFoundationsHealthHealth PolicyHealth Services ResearchHealthcareInvestigationLiteratureMedicalMental DepressionMethodologyMethodsModelingNational Institute of Drug AbuseNational Institute of Mental HealthObservational StudyPatientsPatternPerformancePhasePlagueProbabilityProcessPublic HealthResearchResearch DesignResearch PersonnelResearch Project GrantsRisk FactorsSafetySampling ErrorsScienceSelection BiasSeriesSociologySoftware DesignSolutionsSourceSpace ModelsSpecific qualifier valueStatistical MethodsStructureSymptomsSystemTechnologyTestingTranslational ResearchUncertaintyUnited States National Institutes of HealthValidationWeightWorkbasecommercializationdesignimprovedinnovationneglectnew technologynovelphase 1 studyprototypepublic health relevancescreeningsimulationsoftware developmentstatisticstechnological innovationtheoriestooltreatment effectuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Improving statistical methods to provide better inferences and new analytical capabilities for categorical regression models would be invaluable to the medical and health-related research communities. Presently, single regression models are used extensively to identify patterns of disease-related symptoms, screen for disorders, analyze the results of clinical trials, and for the assessment and justification of public health policies. However, while single model estimation and inference is widely used in health-related studies, such approaches neglect model uncertainty, thus abrogating the opportunity to: i) detect additional statistical regularities (e.g., treatment effects, risk factors), ii) improve the
precision of statistical inferences for estimation and prediction/classification (e.g., patient screening, diagnosis), iii) control for overfitting (e.g., model selection bias), and iv) include different yet highly correlated risk factors. This Phase I study investigates the feasibility of combining robust estimators and specification analysis methods within a multimodel framework to create a robust multimodel estimation and inference technology that addresses the limitations of the single model approach. Robust multimodeling is a specific type of Frequentist Model Averaging (FMA) methodology. First, an important feature of this approach is that it provides robust confidence intervals on predictions and effect sizes averaged across multiple models, which simultaneously incorporate sources of uncertainty that arise from the presence of many different (yet equally appropriate) models of the same data generating process as well as sources of uncertainty resulting from sampling error. A second feature of our robust multimodeling approach is that it has a robust Bayesian Model Averaging (BMA) interpretation. Specifically, theoretical arguments establish that all inferences are robust with respect to the presence of model misspecification. Third, previous work in the BMA and FMA literature has tended to focus upon using the "most probable" models constrained within a model space by applying Occam's Window to identify a group of best models, rather than all possible models in computationally tractable model spaces. In this Phase I study, alternative strategies for multimodel estimation and inference involving large model spaces will be empirically studied with extensive simulations using realistic models on clinical trial datasets (NIDA-CTN, NIMH-STAR*D). Finally, Phase I feasibility results will provide the preliminary research and design for the Phase II prototype software and support technology dissemination through collaborative health-related research projects to establish the essential foundation for Phase III product commercialization.
描述(由申请人提供):改进统计方法,为分类回归模型提供更好的推论和新的分析能力,对医学和健康相关的研究界来说是无价的。目前,单一回归模型被广泛用于识别疾病相关症状的模式,筛查疾病,分析临床试验结果,以及评估和证明公共卫生政策的合理性。然而,尽管单一模型估计和推断被广泛用于与健康有关的研究,但这种方法忽视了模型的不确定性,从而丧失了以下机会:1)发现额外的统计规律(例如,治疗效果、风险因素)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven S Henley其他文献
Steven S Henley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven S Henley', 18)}}的其他基金
Developing Robust Chronic Critical Illness Risk Models
开发稳健的慢性危重疾病风险模型
- 批准号:
8979823 - 财政年份:2015
- 资助金额:
$ 28.95万 - 项目类别:
Robust Suicide/Reinjury Risk Models to Assess Healthcare Systems
用于评估医疗保健系统的稳健自杀/再伤风险模型
- 批准号:
8781864 - 财政年份:2014
- 资助金额:
$ 28.95万 - 项目类别:
Robust Classification Methods for Categorical Regression
分类回归的稳健分类方法
- 批准号:
7395177 - 财政年份:2003
- 资助金额:
$ 28.95万 - 项目类别:
Robust Classification Methods for Categorical Regression
分类回归的稳健分类方法
- 批准号:
7686932 - 财政年份:2003
- 资助金额:
$ 28.95万 - 项目类别:
Robust Classification Methods for Categorical Regression
分类回归的稳健分类方法
- 批准号:
6645565 - 财政年份:2003
- 资助金额:
$ 28.95万 - 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
- 批准号:
7122096 - 财政年份:2002
- 资助金额:
$ 28.95万 - 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
- 批准号:
6953713 - 财政年份:2002
- 资助金额:
$ 28.95万 - 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
- 批准号:
6834967 - 财政年份:2002
- 资助金额:
$ 28.95万 - 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
- 批准号:
6549395 - 财政年份:2002
- 资助金额:
$ 28.95万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 28.95万 - 项目类别:
Research Grant