DDDAS-SMRP: Measuring and Controlling Turbulence and Particle Populations

DDDAS-SMRP:测量和控制湍流和粒子群

基本信息

  • 批准号:
    0540147
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-01-01 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

This project will advance capabilities in two complex and previously unaddressed applications: (i) measuring, controlling and preventing the formation of turbulence in fluid flow to achieve drag reduction, and (ii) measuring size and shape distributions of populations of crystalline particles, and model-based feedback control of the manufacture of these particles in real time. Given recent developments in the underlying science and required technology, the project provides for the first time a realistic chance at addressing these two complex applications. In turbulence control, computational power now allows direct simulation of turbulent flows, as well as the promise of model-based control approaches. Second, the advent of MEMS technology makes it possible to envisage sensors and actuators that can work at the scale of turbulence-producing coherent structures, which can be on the order of 100-1000 um. Finally, a better fundamental understanding of these coherent structures has recently been achieved. In measuring and controlling particle populations, the project will integrate computational and measurement capability to analyze video microscopy images in real time to determine particle size and shape distributions. By manipulating environmental variables such as pH, impurity concentration, and temperature, we can influence the evolving particle shape, which can be used as a marker for crystal structure (enabling polymorph control) in pharmaceutical applications.The applications chosen are ideal for developing DDDAS tools because of the following features: complex models with large numbers of degrees of freedom, high complexity measurements, significant sources of noise and uncertainty, and significant industrial and economic impact. The research conducted under this project will develop and demonstrate the state estimation method known as moving horizon estimation as the algorithm for assimilating in real time the data and dynamic, nonlinear model, and will develop and implement the autocovariance least squares method for identifying the disturbance structures from the measurement data and models. By identifying the disturbance structures from data, the derived models do not have to be perfect in order to represent and predict the data accurately and enable model-based feedback control. The project will develop the new optimization tools that are required to enable state estimation, disturbance identification, and model-based feedback control. Industrial collaborations and participation in industrial consortia provide ample opportunities for technology transfer of the state estimation and model predictive control (ExxonMobil, Eastman Chemical, Shell), video imaging (MettlerToledo), and crystal size and shape distribution control (Mitsubishi and GlaxoSmithKline).
该项目将在两个复杂且以前未解决的应用中提高功能:(i)测量,控制和防止流体流量中的湍流形成以减少阻力,以及(ii)测量晶体颗粒种群的大小和形状分布,以及基于模型的基于模型的粒子的反馈控制这些粒子的生产。鉴于基础科学和所需技术的最新发展,该项目首次提供了解决这两个复杂应用程序的现实机会。在湍流控制中,计算功率现在可以直接模拟湍流,以及基于模型的控制方法的希望。其次,MEMS技术的出现使得可以设想可以在产生湍流的相干结构的规模上工作的传感器和执行器,该结构可以按100-1000 UM的顺序进行。最后,最近已经实现了对这些连贯结构的更好的基本理解。在测量和控制粒子种群时,该项目将集成计算能力和测量能力,以实时分析视频显微镜图像,以确定粒径和形状分布。通过操纵环境变量,例如pH,杂质浓度和温度,我们可以影响不断发展的粒子形状,在药物应用中,可以用作晶体结构(启用多晶型物控制)的标志物的标记。所选择的应用是开发DDDAS工具的理想选择,因为它具有以下特征:具有以下重要的自由度和高度的自由度和高度的频率,高度的频率和高度的自由度,并构成了巨大的自由度,并构成了巨大的多种程度,并构成了高度的高度,并构成了高度的繁殖,并构成了高度的繁殖,并构成了高度的繁殖度,并构成了高度繁殖的范围,并构成了高度繁殖的范围,并构成了高度繁殖的范围,并构成了高度的繁殖,并构成了高度的范围。 影响。在该项目下进行的研究将开发并证明称为移动范围估计的状态估计方法是实时同化的算法,数据和动态,非线性模型,并将开发和实施自动驾驶最小二乘最小二乘方法,以从测量数据和模型中识别出干扰结构。通过从数据中识别干扰结构,派生的模型不必是完美的,以准确地表示和预测数据并启用基于模型的反馈控制。该项目将开发新的优化工具,以实现状态估计,干扰识别和基于模型的反馈控制。工业合作和参与工业财团为国家估计和模型预测控制(Exxonmobil,Eastman Chemical,Shell),视频成像(Mettletoledo)以及晶体大小和形状分配控制(Mitsubishi和Glaxosmithkline)提供了足够的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rawlings其他文献

James Rawlings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rawlings', 18)}}的其他基金

GOALI: Turnkey Model Predictive Control: automated design, model identification, tuning, and monitoring
GOALI:交钥匙模型预测控制:自动化设计、模型识别、调整和监控
  • 批准号:
    2138985
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Feedback Control Theory, Computation, and Design for Scheduling and Blending
协作提案:用于调度和混合的反馈控制理论、计算和设计
  • 批准号:
    2027091
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Model Predictive Control with Discrete/Continuous Decisions: Theory, Computation, and Application
具有离散/连续决策的模型预测控制:理论、计算和应用
  • 批准号:
    1854007
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
NSF Summer School on Model Predictive Control
NSF 模型预测控制暑期学校
  • 批准号:
    1714232
  • 财政年份:
    2017
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Model Predictive Control with Discrete/Continuous Decisions: Theory, Computation, and Application
具有离散/连续决策的模型预测控制:理论、计算和应用
  • 批准号:
    1603768
  • 财政年份:
    2016
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
GOALI: Performance Monitoring Principles for Nonlinear and Linear Model Predictive Control
GOALI:非线性和线性模型预测控制的性能监控原理
  • 批准号:
    1159088
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Rapid Synthesis of Epitaxial Semiconductors for Energy Applications
用于能源应用的外延半导体的快速合成
  • 批准号:
    1232618
  • 财政年份:
    2012
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Economic optimization of chemical processes with feedback control
通过反馈控制实现化学过程的经济优化
  • 批准号:
    0825306
  • 财政年份:
    2008
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Distributed Model Predictive Control of Large-scale, Networked Systems
大规模网络系统的分布式模型预测控制
  • 批准号:
    0456694
  • 财政年份:
    2005
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Moving Horizon Estimation and Nonlinear, Large-Scale Model Predictive Control of Chemical Processes
化学过程的移动水平估计和非线性、大规模模型预测控制
  • 批准号:
    0105360
  • 财政年份:
    2001
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似海外基金

Study of a new biomarker in pleural mesothelioma and clinical application to early diagnosis
胸膜间皮瘤新生物标志物的研究及其早期诊断的临床应用
  • 批准号:
    25860637
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: DDDAS-SMRP: Optimizing Signal and Image Processing in a Dynamic, Data-Driven Application System
合作研究:DDDAS-SMRP:在动态、数据驱动的应用系统中优化信号和图像处理
  • 批准号:
    0911750
  • 财政年份:
    2008
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
DDDAS-SMRP: Data Assimilation by Field Alignment
DDDAS-SMRP:通过场对齐进行数据同化
  • 批准号:
    0540259
  • 财政年份:
    2006
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
DDDAS - SMRP: A Framework For the Dynamic Data-Driven Fault Diagnosis of Wind Turbine Systems
DDDAS - SMRP:风力涡轮机系统动态数据驱动故障诊断框架
  • 批准号:
    0540132
  • 财政年份:
    2006
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
DDDAS-SMRP: Dynamic Real-Time Order Promising and Fulfillment for Global Make-to-Order Supply Chains
DDDAS-SMRP:全球按单生产供应链的动态实时订单承诺和履行
  • 批准号:
    0540312
  • 财政年份:
    2006
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了