DDDAS-SMRP: Data Assimilation by Field Alignment
DDDAS-SMRP:通过场对齐进行数据同化
基本信息
- 批准号:0540259
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An ideal DDDAS will optimally coordinate state estimation and the observation process. This is indispensable for environmental applications, where models are imperfect and measurements are limited and uncertain. A key part of environmental DDDAS is data assimilation, broadly defined as the process of estimating the state of a system using all relevant information. This project will develop a new approach to data assimilation that makes better use of observations to deal with model imperfections. This new approachwill be developed in the context of mesoscale weather, such as thunderstorms, squall-lines, hurricanes, precipitation, and fronts. In these situations, forecast errors occur in both position ("the storm is in the wrong place") and amplitude ("forecast winds are off"). Position errors are particularly important since they degrade our ability to predict storm tracks, issue warnings, and properly target observation platforms such as aircraft. Current assimilation methods have problems dealing with position errors. Instead of correcting these errors directly, they tend to compensate for them by distorting amplitudes. Distorted amplitude estimates can produce poor forecasts. Poor forecasts are a problem in their own right but, in the case of an environmental DDDAS, they can easily make strategies for gathering new observations ineffective. In this new formulation for data assimilation accounts for errors in both position and amplitude. This leads to a minimization algorithm that can be expressed in two steps: a regularized variational alignment problem and an amplitude adjustment problem. Alignment can be formulated with or without feature detection, it maintains dynamical consistency, and it permits the smoothness of the solution to be systematically controlled. Field alignment should significantly advance the state of DDDAS for environmental problems.This work will lead to better analysis of mesoscale weather, especially hurricanes and severe storms. It turns out that expressing errors in terms of position and amplitude is quite general. Thus, from the perspective of DDDAS, this work will provide new ways to deal with model error in applications as diverse as hydrology, ecology, and oceanography. Field alignment also nicely complements existing amplitude-oriented assimilation methods used in operational weather forecasting centers. Finally, the regularization aspects of this work will also advance the state of the art in alignment methods, which will benefit biomedical imaging and object recognition research.
理想的DDDAS将最佳地协调状态估计和观测过程。这对于环境应用来说是必不可少的,因为环境应用的模型是不完善的,测量是有限的和不确定的。环境DDDAS的一个关键部分是数据同化,广义上定义为使用所有相关信息估计系统状态的过程。该项目将开发一种新的数据同化方法,更好地利用观测数据处理模型缺陷。这种新的方法将在中尺度天气的背景下发展,如雷暴,飑线,飓风,降水和锋面。在这些情况下,预报误差会出现在位置(“风暴在错误的地方”)和幅度(“预报风关闭”)上。位置误差尤其重要,因为它们降低了我们预测风暴路径、发布警报和正确定位飞机等观测平台的能力。目前的同化方法在处理位置误差方面存在问题。他们倾向于通过扭曲振幅来补偿这些误差,而不是直接校正这些误差。失真的振幅估计可能会产生糟糕的预测。预测不佳本身就是一个问题,但在环境DDDAS的情况下,它们很容易使收集新观测结果的战略无效。 在这个新的公式中,数据同化考虑了位置和振幅的误差。这导致一个最小化算法,可以表示为两个步骤:一个正则化的变分对齐问题和幅度调整问题。对齐可以在有或没有特征检测的情况下制定,它保持动态一致性,并且它允许系统地控制解决方案的平滑度。实地调整应能大大提高DDDAS在环境问题方面的地位,这项工作将有助于更好地分析中尺度天气,特别是飓风和强风暴。事实证明,用位置和幅度来表示误差是相当普遍的。因此,从DDDAS的角度来看,这项工作将提供新的方法来处理水文学,生态学和海洋学等不同应用中的模型误差。场对齐也很好地补充了业务天气预报中心使用的现有振幅导向同化方法。最后,这项工作的正则化方面也将推进对齐方法的最新发展,这将有利于生物医学成像和目标识别研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis McLaughlin其他文献
Data Assimilation
- DOI:
10.1007/978-0-387-36699-9_33 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Dennis McLaughlin - 通讯作者:
Dennis McLaughlin
Dennis McLaughlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis McLaughlin', 18)}}的其他基金
CMG: Understanding Ensemble Approaches to Environmental Data Assimilation
CMG:了解环境数据同化的集成方法
- 批准号:
0530851 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
A New Approach to Hydrologic Data Assimilation
水文资料同化的新方法
- 批准号:
0003361 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
ITR/AP: An Ensemble Approach to Data Assimilation in the Earth Sciences
ITR/AP:地球科学数据同化的整体方法
- 批准号:
0121182 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: "Geometry of Charateristic Classes"
数学科学:“特征类的几何”
- 批准号:
9504237 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
An Investigation of Hydrologic Scale: Natural Variability Modeling, and Data Collection
水文规模的研究:自然变异建模和数据收集
- 批准号:
9218602 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing grant
Characterizing Groundwater Contamination Before and During Remediation
修复之前和期间的地下水污染特征
- 批准号:
9222116 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Geometry of Characteristic Classes and Non-Abelian Cohomology
数学科学:特征类几何和非阿贝尔上同调
- 批准号:
9310433 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Construction of a Geometric Category Representing H4(M;Z), and Its Implications
数学科学:表示 H4(M;Z) 的几何范畴的构造及其含义
- 批准号:
9102765 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant
Experiments on a Stratified Swirling Confined Jet Flowfield
分层旋流限流射流流场实验
- 批准号:
8560806 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Standard Grant
Field Sampling Strategy for Determination of Groundwater Contamination Using Distributed Parameter Estimation Theory
利用分布式参数估计理论确定地下水污染的现场采样策略
- 批准号:
8514987 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Continuing grant
相似海外基金
Collaborative Research: DDDAS-SMRP: Optimizing Signal and Image Processing in a Dynamic, Data-Driven Application System
合作研究:DDDAS-SMRP:在动态、数据驱动的应用系统中优化信号和图像处理
- 批准号:
0911750 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
DDDAS-SMRP: Measuring and Controlling Turbulence and Particle Populations
DDDAS-SMRP:测量和控制湍流和粒子群
- 批准号:
0540147 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
DDDAS - SMRP: A Framework For the Dynamic Data-Driven Fault Diagnosis of Wind Turbine Systems
DDDAS - SMRP:风力涡轮机系统动态数据驱动故障诊断框架
- 批准号:
0540132 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
DDDAS-SMRP: Dynamic Real-Time Order Promising and Fulfillment for Global Make-to-Order Supply Chains
DDDAS-SMRP:全球按单生产供应链的动态实时订单承诺和履行
- 批准号:
0540312 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
DDDAS - SMRP: A Framework For the Dynamic Data-Driven Fault Diagnosis of Wind Turbine Systems
DDDAS - SMRP:风力涡轮机系统动态数据驱动故障诊断框架
- 批准号:
0540278 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
DDDAS-SMRP: Integrated Wireless Phone Based Emergency Response System (WIPER)
DDDAS-SMRP:基于集成无线电话的应急响应系统 (WIPER)
- 批准号:
0540348 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
DDDAS-SMRP: Robustness and Performance in Data-Driven Revenue Management
DDDAS-SMRP:数据驱动收入管理的稳健性和性能
- 批准号:
0540143 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: DDDAS-SMRP: Optimizing Signal and Image Processing in a Dynamic, Data-Driven Application System
合作研究:DDDAS-SMRP:在动态、数据驱动的应用系统中优化信号和图像处理
- 批准号:
0540154 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
DDDAS-SMRP: Coordinated Control of Multiple Mobile Observing Platforms for Weather Forecast Improvement
DDDAS-SMRP:多个移动观测平台的协调控制以改善天气预报
- 批准号:
0540331 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
DDDAS-SMRP: Dynamic Data Driven Integrated Simulation and Stochastic Optimization for Wildland Fire Containment
DDDAS-SMRP:动态数据驱动的野地火灾遏制综合仿真和随机优化
- 批准号:
0540000 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant