Computational Prediction of Biological Networks in Microbes and Applications to Cyanobacteria
微生物生物网络的计算预测及其在蓝藻中的应用
基本信息
- 批准号:0542119
- 负责人:
- 金额:$ 187.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The University of Georgia is awarded funds to develop a suite of computational tools in support of elucidation of metabolic and regulatory networks in microbial organisms. Using these computational tools in conjunction with experimental investigation, the team will predict and characterize a number of important metabolic networks and their associated regulatory networks in cyanobacteria. The outcome of these predictions will be wiring diagrams of the selected target networks. The computational elucidation of biological networks will rely mainly on information derived through comparative genome analyses and interpretation of microarray gene expression data. Currently over 40 cyanobacterial genomes have been sequenced or are in the process of being sequenced, providing a rich source of information for network elucidation. In addition, substantial microarray data has been or is being generated for various cyanobacterial organisms, which are or will be publicly accessible in the near future. Using such information, a number of computational tools will be developed to derive as much gene function and association information as possible, which will be then used as constraints in the elucidation of biological networks. These tools will include tools for (a) gene function prediction, (b) prediction of operons and regulons; (c) prediction of protein-protein and protein-DNA interactions; (d) mapping pathways/networks (possibly partial) across genomes; (e) prediction of functional modules that are conserved across multiple microbial organisms; and (f) prediction of the wiring diagrams of metabolic and regulatory networks. The target networks in cyanobacteria with sequenced genomes include (a) photosynthesis and its acclimation to different environmental factors, (b) nitrogen assimilation, (c) phosphorus assimilation, (d) carbon fixation, (e) iron assimilation and regulation and (f) osmolarity regulation. The predictions will be based on both public experimental data and data generated in this project. Each of the tools will provide a new and useful addition to the current pool of computational tools for microbial genome analysis and network elucidation. The computational tools can be used for network elucidation for microbial organisms in general as long as a target organism has its genome and some related genomes sequenced and has microarray gene expression data available relevant to the target networks. The comprehensive nature and the systemic approach of the planned prediction capability will provide a highly effective and transferable framework for microbial network elucidation in general. Other researchers can directly use this framework and the tools developed in this project in their own investigation of pathways and networks as all the prediction programs will be provided as open source. This project provides an ideal training ground for both undergraduate and graduate students to learn bioinformatics tool development and application for solving complex biological problems. New bioinformatics and genomics courses will be developed and taught based on the research results of this project. In addition, annual training workshops will teach interested microbiologists the use of the tools developed in this project and other related tools.
格鲁吉亚大学获得资金开发一套计算工具,以支持微生物生物体中代谢和调控网络的阐明。使用这些计算工具与实验研究相结合,该团队将预测和表征蓝藻中一些重要的代谢网络及其相关的调控网络。这些预测的结果将是所选目标网络的布线图。生物网络的计算解释将主要依赖于通过比较基因组分析和微阵列基因表达数据的解释获得的信息。目前已有超过40种蓝藻基因组已被测序或正在测序,为网络解析提供了丰富的信息来源。此外,大量的微阵列数据已经或正在产生的各种蓝藻生物,这是或将在不久的将来公开访问。利用这些信息,将开发一些计算工具,以获得尽可能多的基因功能和关联信息,然后将其用作阐明生物网络的约束条件。这些工具将包括用于以下方面的工具:(a)基因功能预测;(B)操纵子和调节子预测;(c)蛋白质-蛋白质和蛋白质-DNA相互作用预测;(d)绘制跨基因组的通路/网络(可能是部分的);(e)预测在多种微生物有机体中保守的功能模块;(f)预测代谢和调节网络的线路图。蓝藻的目标网络包括(a)光合作用及其对不同环境因子的适应,(B)氮同化,(c)磷同化,(d)碳固定,(e)铁同化和调节,(f)渗透压调节。这些预测将基于公开的实验数据和该项目产生的数据。每一个工具将提供一个新的和有用的除了目前池的计算工具,用于微生物基因组分析和网络阐明。计算工具一般可用于微生物生物体的网络阐明,只要目标生物体具有其基因组和一些相关基因组测序,并且具有与目标网络相关的可用微阵列基因表达数据。计划的预测能力的综合性和系统性方法将为微生物网络的阐明提供一个高度有效和可转移的框架。其他研究人员可以直接使用这个框架和在这个项目中开发的工具,在他们自己的路径和网络的调查,因为所有的预测程序将作为开源提供。该项目为本科生和研究生提供了一个理想的训练基地,学习生物信息学工具的开发和应用,以解决复杂的生物学问题。新的生物信息学和基因组学课程将根据该项目的研究成果开发和教授。此外,每年的培训讲习班将向感兴趣的微生物学家教授本项目开发的工具和其他相关工具的使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Xu其他文献
Synergistic inhibitory effects of transplatin and beta-hydroxyisovalerylshikon on carcinoma A431 cells involve epidermal growth factor receptor.
转铂和β-羟基异戊酰紫草对癌A431细胞的协同抑制作用涉及表皮生长因子受体。
- DOI:
10.1016/s0304-3835(02)00457-3 - 发表时间:
2002 - 期刊:
- 影响因子:9.7
- 作者:
Ying Xu;S. Nakajo;K. Nakaya - 通讯作者:
K. Nakaya
Mesh convergence for turbulent combustion
湍流燃烧的网格收敛
- DOI:
10.3934/dcds.2016.36.4383 - 发表时间:
2016 - 期刊:
- 影响因子:1.1
- 作者:
Xiaoxue Gong;Ying Xu;Vinay Mahadeo;T. Kaman;J. Larsson;J. Glimm - 通讯作者:
J. Glimm
Elucidation of Cancer Drivers Through Comparative Omic Data Analyses
通过比较组学数据分析阐明癌症驱动因素
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ying Xu;J. Cui;D. Puett - 通讯作者:
D. Puett
Improving Lithium‐Ion Diffusion Kinetics in Nano‐Si@C Anode Materials with Hierarchical MoS2 Decoration for High‐Performance Lithium‐Ion Batteries
利用分级 MoS2 修饰改善高性能锂离子电池纳米 Si@C 负极材料中的锂离子扩散动力学
- DOI:
10.1002/celc.202100263 - 发表时间:
2021 - 期刊:
- 影响因子:4
- 作者:
Xiongbiao Ye;Chuanhai Gan;Liuqing Huang;Yiwei Qiu;Ying Xu;Liuying Huang;Xuetao Luo - 通讯作者:
Xuetao Luo
Evolution of Arginine Biosynthesis in the Bacterial Domain: Novel Gene-Enzyme Relationships from Psychrophilic Moritella Strains (Vibrionaceae) and Evolutionary Significance of N-α-Acetyl Ornithinase
细菌领域精氨酸生物合成的进化:嗜冷Moritella菌株(弧菌科)的新基因-酶关系和N-α-乙酰鸟氨酸酶的进化意义
- DOI:
10.1128/jb.182.6.1609-1615.2000 - 发表时间:
2000 - 期刊:
- 影响因子:3.2
- 作者:
Ying Xu;Ziyuan Liang;C. Legrain;H. Rüger;N. Glansdorff - 通讯作者:
N. Glansdorff
Ying Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Xu', 18)}}的其他基金
Building A Teacher-AI Collaborative System for Personalized Instruction and Assessment of Comprehension Skills
构建教师-AI协作系统,进行个性化教学和理解能力评估
- 批准号:
2302730 - 财政年份:2023
- 资助金额:
$ 187.58万 - 项目类别:
Standard Grant
UNS: Organophosphates and Phthalates in Sleep Microenvironments: Emission, Transport, and Infants' Exposure
UNS:睡眠微环境中的有机磷酸酯和邻苯二甲酸盐:排放、运输和婴儿接触
- 批准号:
1512610 - 财政年份:2015
- 资助金额:
$ 187.58万 - 项目类别:
Continuing Grant
CAREER: Emission and Transport of PBDEs in Indoor Environments
职业:室内环境中多溴联苯醚的排放和传输
- 批准号:
1150713 - 财政年份:2012
- 资助金额:
$ 187.58万 - 项目类别:
Standard Grant
Collaborative Research: Phthalate Plasticizers: Temperature Dependence of Material/Air Equilibria and Consequences for Emissions, Exposure and Risk
合作研究:邻苯二甲酸酯增塑剂:材料/空气平衡的温度依赖性以及对排放、暴露和风险的影响
- 批准号:
1066642 - 财政年份:2011
- 资助金额:
$ 187.58万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Computer Cluster for Bioinformatics Research at UGA
MRI:在佐治亚大学购买用于生物信息学研究的计算机集群
- 批准号:
0821263 - 财政年份:2008
- 资助金额:
$ 187.58万 - 项目类别:
Standard Grant
CompBio: A New Paradigm of Protein Threading: simultaneous backbone threading and side-chain packing prediction.
CompBio:蛋白质线程的新范式:同时主链线程和侧链包装预测。
- 批准号:
0621700 - 财政年份:2006
- 资助金额:
$ 187.58万 - 项目类别:
Standard Grant
A Computational Capability for Fast and Reliable Characterization of Protein Complexes
快速可靠地表征蛋白质复合物的计算能力
- 批准号:
0354771 - 财政年份:2003
- 资助金额:
$ 187.58万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Combinatorial Algorithms for Biological Data Clustering
ITR 协作研究:生物数据聚类的组合算法
- 批准号:
0407204 - 财政年份:2003
- 资助金额:
$ 187.58万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Combinatorial Algorithms for Biological Data Clustering
ITR 协作研究:生物数据聚类的组合算法
- 批准号:
0325386 - 财政年份:2003
- 资助金额:
$ 187.58万 - 项目类别:
Continuing Grant
A Computational Capability for Fast and Reliable Characterization of Protein Complexes
快速可靠地表征蛋白质复合物的计算能力
- 批准号:
0213840 - 财政年份:2002
- 资助金额:
$ 187.58万 - 项目类别:
Continuing Grant
相似海外基金
Prediction and validation of plausible biological phenomena using systematic preprocessing in drug discovery research.
在药物发现研究中使用系统预处理来预测和验证合理的生物现象。
- 批准号:
23K11320 - 财政年份:2023
- 资助金额:
$ 187.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a prediction model for depression recurrence based on multimodal sampling of biological Indicators
基于生物指标多模态采样的抑郁症复发预测模型的开发
- 批准号:
23K07027 - 财政年份:2023
- 资助金额:
$ 187.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Prediction of Prognosis in Frontotemporal Dementia Using Epigenetic and Genetic Markers of Biological Aging and Disease
利用生物衰老和疾病的表观遗传和遗传标记改善额颞叶痴呆的预后预测
- 批准号:
10196850 - 财政年份:2021
- 资助金额:
$ 187.58万 - 项目类别:
Prediction of Biological Features of Small Renal Masses using Machine Learning Based Image Analysis.
使用基于机器学习的图像分析预测小肾脏肿块的生物学特征。
- 批准号:
21K20981 - 财政年份:2021
- 资助金额:
$ 187.58万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of NAFLD patient prognosis prediction method using glycan biomarkers and elucidation of its biological significance
利用聚糖生物标志物开发 NAFLD 患者预后预测方法并阐明其生物学意义
- 批准号:
20K08383 - 财政年份:2020
- 资助金额:
$ 187.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation and prediction of the resilience of biological communities under global environmental change
全球环境变化下生物群落恢复力评估与预测
- 批准号:
20H03010 - 财政年份:2020
- 资助金额:
$ 187.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantitative MRI for structural and functional characterization of head and neck cancer for outcome prediction and biological individualization of MR-guided radiotherapy
用于头颈癌结构和功能表征的定量 MRI,用于 MR 引导放射治疗的结果预测和生物个体化
- 批准号:
437907809 - 财政年份:2020
- 资助金额:
$ 187.58万 - 项目类别:
Research Grants
Development of Pulse Acquisition System for Accurate Beam Quality Measurement of Multi-ion Therapy and for Accurate Prediction of Biological effect
开发脉冲采集系统,用于多离子治疗的精确束流质量测量和生物效应的准确预测
- 批准号:
20K16776 - 财政年份:2020
- 资助金额:
$ 187.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enabling precision management of glaucoma through discovery of underlying biological pathways and clinical prediction tool development
通过发现潜在的生物学途径和开发临床预测工具,实现青光眼的精准管理
- 批准号:
MR/T040912/1 - 财政年份:2020
- 资助金额:
$ 187.58万 - 项目类别:
Fellowship
Development of the prognosis prediction model in patients with head and neck cancer using tumor biological characteristics-reflected MRI data and the artificial intelligence-based analysis
利用肿瘤生物学特征反映的MRI数据和基于人工智能的分析开发头颈癌患者的预后预测模型
- 批准号:
18K07661 - 财政年份:2018
- 资助金额:
$ 187.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)