CAREER: Using High-throughput Single-molecule Analysis to Reveal the Mechanisms of Target Site Location by DNA Repair Proteins

职业:利用高通量单分子分析揭示 DNA 修复蛋白的靶位点定位机制

基本信息

  • 批准号:
    0544638
  • 负责人:
  • 金额:
    $ 90.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-05-15 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

This research incorporates micro-scale materials engineering, surface chemistry, physics and biochemistry to answer fundamental questions about biology that cannot easily be addressed through traditional experimental methods. The overall goal encompasses a classic problem in biochemistry, namely: How do site- or structure-specific DNA-binding proteins locate their targets among a vast excess of nonspecific DNA? To help address this question, the Greene laboratory is using total internal reflection fluorescence microscopy (TIRFM) as a tool to directly visualize individual protein complexes as they search for their target sites on single molecules of DNA. The Greene laboratory is also developing new methods that will allow the construction of aligned arrays comprised of hundreds of individual DNA molecules, which are suspended above an inert lipid bilayer and organized into patterns with user-defined orientations, tensions, and topologies. These DNA arrays will allow for rapid collection of statistically relevant information from hundreds of individual molecules by making possible parallel processing of multiple reaction trajectories. These novel research tools will be used to determine how proteins that are involved in post-replicative repair of mismatched bases locate and respond to their specific targets. Despite years of intensive investigation these mechanisms remain unknown, largely due to the inherent limitations of traditional ensemble-level biochemical measurements. These new single-molecule approaches can be used to determine exactly what proteins are bound to DNA, where they are bound, how they behave, when they leave, and how they influence one another, all in real-time at the single-molecule level.The technology-driven methods developed during the course of this research will provide a high-throughput approach for single-molecule analysis of nucleoprotein complexes, which can be applied towards the study of virtually any biological system that involves the interactions between protein and DNA molecules. This interdisciplinary work also provides trainees with a cutting-edge, broad-based educational experience that will allow them to successfully contribute to the scientific community upon completion of their degree requirements. To promote the understanding of single-molecule approaches, these emerging technologies will be integrated into the university's graduate course curriculum; several departmental lectures will be scheduled featuring leading experts from around the country; and a regional discussion group/symposium will also be organized to stimulate interactions and communication between the laboratories in the New York area that are interested in single-molecule research. Dr. Greene has initiated a separate project that will be conducted solely by undergraduate and high school students. The goal of these efforts is to incorporate younger students into all aspects of scientific work performed in the laboratory, thereby providing them with valuable, real-world research experience.
本研究结合微观尺度材料工程、表面化学、物理和生物化学来回答传统实验方法难以解决的生物学基本问题。总体目标包含了生物化学中的一个经典问题,即:位点特异性或结构特异性DNA结合蛋白如何在大量非特异性DNA中定位它们的靶标?为了帮助解决这个问题,格林实验室正在使用全内反射荧光显微镜(TIRFM)作为一种工具,当单个蛋白质复合物在单个DNA分子上寻找其目标位点时,可以直接可视化单个蛋白质复合物。格林实验室也在开发新的方法,允许构建由数百个DNA分子组成的排列阵列,这些DNA分子悬浮在惰性脂质双分子层上,并按照用户定义的方向、张力和拓扑结构组织成模式。这些DNA阵列将允许从数百个单个分子中快速收集统计相关信息,使多个反应轨迹的并行处理成为可能。这些新颖的研究工具将用于确定参与错配碱基复制后修复的蛋白质如何定位并对其特定靶标做出反应。尽管经过多年的深入研究,这些机制仍然未知,很大程度上是由于传统的集合级生化测量的固有局限性。这些新的单分子方法可以用来准确地确定哪些蛋白质与DNA结合,它们在哪里结合,它们如何表现,何时离开,以及它们如何相互影响,所有这些都是在单分子水平上实时进行的。在本研究过程中开发的技术驱动方法将为核蛋白复合物的单分子分析提供高通量方法,这可以应用于几乎任何涉及蛋白质和DNA分子之间相互作用的生物系统的研究。这种跨学科的工作也为受训者提供了一个前沿的、广泛的教育经验,使他们能够在完成学位要求后成功地为科学界做出贡献。为了促进对单分子方法的理解,这些新兴技术将被整合到大学的研究生课程中;将安排几个部门讲座,邀请来自全国各地的顶尖专家;还将组织一个区域讨论小组/专题讨论会,以促进纽约地区对单分子研究感兴趣的实验室之间的相互作用和交流。格林博士发起了一个单独的项目,将由本科生和高中生单独进行。这些努力的目标是将年轻的学生纳入实验室科学工作的各个方面,从而为他们提供有价值的,真实的研究经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Greene其他文献

Single Molecule Study of Promoter Search By E Coli RNAP
  • DOI:
    10.1016/j.bpj.2009.12.393
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Feng Wang;Ilya Finkelstein;Eric Greene
  • 通讯作者:
    Eric Greene
Introduction to the Special Issue on the Cultural Therapeutics of Film
电影文化治疗学特刊简介
  • DOI:
    10.1177/00221678211017342
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Eric Greene;N. Gupta
  • 通讯作者:
    N. Gupta
E. Coli RNA Polymerase Searches for Promoters through 3D Diffusion
  • DOI:
    10.1016/j.bpj.2012.11.2997
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Feng Wang;Sy Redding;Ilya Finkelstein;Jason Gorman;David Reichman;Eric Greene
  • 通讯作者:
    Eric Greene
Chan Before Chan
陈之前陈
  • DOI:
    10.1515/9780824886875
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Greene
  • 通讯作者:
    Eric Greene
Healing Breaths and Rotting Bones: On the Relationship Between Buddhist and Chinese Meditation Practices During the Eastern Han and three Kingdoms Period
疗息与腐骨:论东汉三国时期佛教与中国禅修的关系
  • DOI:
    10.1179/0737769x14z.00000000012
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Eric Greene
  • 通讯作者:
    Eric Greene

Eric Greene的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Greene', 18)}}的其他基金

Why do eukaryotes have two Rad51/RecA family recombinases?
为什么真核生物有两种 Rad51/RecA 家族重组酶?
  • 批准号:
    1817315
  • 财政年份:
    2018
  • 资助金额:
    $ 90.21万
  • 项目类别:
    Standard Grant
Using DNA Curtains to Reveal the Mechanisms of Target Site Location by DNA Binding Proteins
利用 DNA 窗帘揭示 DNA 结合蛋白的靶位点定位机制
  • 批准号:
    1154511
  • 财政年份:
    2012
  • 资助金额:
    $ 90.21万
  • 项目类别:
    Continuing Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

CC* Data Storage: Cost-effective Attached Storage for High throughput computing using Homo- geneous IT (CASH HIT) supporting Penn State Science, the Open Science Grid and LIGO
CC* 数据存储:使用同质 IT (CASH HIT) 实现高吞吐量计算的经济高效附加存储,支持宾夕法尼亚州立大学科学学院、开放科学网格和 LIGO
  • 批准号:
    2346596
  • 财政年份:
    2024
  • 资助金额:
    $ 90.21万
  • 项目类别:
    Standard Grant
Development and application of high-throughput glycoproteomics using sialic acid linkage specific derivatization
唾液酸键特异性衍生化高通量糖蛋白组学的开发与应用
  • 批准号:
    23K06078
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Next generation high throughput lipidomics using adaptive modelling
使用自适应建模的下一代高通量脂质组学
  • 批准号:
    DP230101795
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
    Discovery Projects
Understanding the Heterogeneity of Nanoscale Extracellular Vesicles, Exomeres, and Supermeres using Next Generation Optical Nanotweezers
使用下一代光学纳米镊子了解纳米级细胞外囊泡、外泌体和 Supermeres 的异质性
  • 批准号:
    10714221
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
  • 批准号:
    10678341
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
Enhance myogenic transdifferentiation efficiency using engineering approaches
利用工程方法提高生肌转分化效率
  • 批准号:
    10647491
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
  • 批准号:
    10638114
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
Japan_IPAP: High-Throughput Prototyping of Heterogeneity in genetic networks using Artificial Cells with femtolitre volume (HT-PHAC)
Japan_IPAP:使用飞升体积的人工细胞(HT-PHAC)对遗传网络中的异质性进行高通量原型设计
  • 批准号:
    BB/X01262X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
    Research Grant
Precision Apheresis: stem cell isolation from patients with sickle cell disease for gene therapy using high-throughput microfluidics
精密血浆分离术:使用高通量微流控技术从镰状细胞病患者中分离干细胞进行基因治疗
  • 批准号:
    10723247
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
  • 批准号:
    10766493
  • 财政年份:
    2023
  • 资助金额:
    $ 90.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了