Precision Apheresis: stem cell isolation from patients with sickle cell disease for gene therapy using high-throughput microfluidics
精密血浆分离术:使用高通量微流控技术从镰状细胞病患者中分离干细胞进行基因治疗
基本信息
- 批准号:10723247
- 负责人:
- 金额:$ 13.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-05 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvisory CommitteesAffectAmericanAnimal ModelAntibodiesAutologousBiomedical EngineeringBloodBlood CellsBlood Component RemovalBlood PlateletsBlood specimenBostonCD34 geneCancer DiagnosticsCannulationsCathetersCell SeparationCell TherapyCellsCharacteristicsCirculationClinicalCollectionCommittee MembersComputer ModelsDiseaseDoseEngineeringEngraftmentEpitopesFundingGenesGoalsHematocrit procedureHematologyHematopoiesisHematopoieticHematopoietic stem cellsHemoglobinopathiesHourHumanImmunodeficient MouseImmunotherapyIndividualInheritedInterphase CellKineticsLabelLeadLeukocytesMagnetismMentorsMethodsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMusNaturePathologyPatientsPediatric HospitalsPeripheralPeripheral Blood Stem CellPersonsPlatelet aggregationProcessResearchResearch PersonnelResearch ProposalsResidual stateResource-limited settingSickle CellSickle Cell AnemiaSortingStem cell transplantSurfaceTechnologyTestingThrombophiliaTimeTrainingTranslatingTransplantationUnited StatesUnited States National Institutes of HealthWorkXenograft procedureblood productcostfeasibility testinggene therapyin vivoinstrumentmanufacturemicrofluidic technologymigrationmouse modelnanonanoparticleprogramsskillsstem cell biologystem cell gene therapystem cell technologystem cellssuccesstechnology developmenttherapeutic genetissue culture
项目摘要
PROJECT SUMMARY
Sickle Cell Disease (SCD) affects millions of people around the world. Recently, stem cell gene therapy has
emerged as a potentially curative option for SCD. Obtaining a sufficient dose of hematopoietic stem and
progenitor cells (HSPCs) from peripheral blood is paramount to the success of these gene therapies. However,
the higher numbers of RBCs in apheresis products can adversely impact the yield of valuable hematopoietic
stem cells during purification (~46% loss). There is, therefore, an immediate unmet need to develop an isolation
technology that can efficiently recover hematopoietic stem cells from apheresis products, irrespective of their
hematocrits. To address this challenge, I will develop a microfluidic HSPC isolation chip (HSPC-iChip) capable
of recovering >95% CD34+ cells from full apheresis products (~300 mL) in an hour (Aim 1). I will bring
advancements (in microfluidic technologies) from the field of cancer diagnostics to the field of
hematology to accomplish this. My central hypothesis is that the HSPC-iChip can isolate highly viable and
functional hematopoietic stem cells. To test this hypothesis, I will genetically edit the isolated stem cells and
analyze engraftment, disease correction, and human hematopoiesis in NBSGW mice (Aim 1). Additionally, under
the influence of centrifugal forces, the hypercoagulable state of sickle cell patients can lead to the formation of
cell clusters. These clusters have been observed to destabilize the cell collection interface, requiring highly
skilled apheresis operators for stem cell collection from sickle cell patients. Once the apheresis product is
collected, subsequent purification of ~1% HSPCs from the rest of the cells further necessitates specialized
instruments and consumables. This restricts a broader implementation of sickle cell gene therapy as most
patients reside in low-resource settings where skilled labor, bio-cleanrooms, and financial capabilities
are restricted. To address this challenge, in Aim 2, I will test the feasibility of a Precision Apheresis
technology that can directly separate HSPCs from peripheral circulation in a single step based on their
surface epitopes (CD34). The training objective of this project is to provide Dr. Mishra—who has a strong
background in microfluidics and cell sorting—with additional scientific training from leading pioneers in
therapeutic gene editing for hemoglobinopathies (Dr. Bauer, Boston Children's Hospital/Harvard), stem cell
apheresis and pathology (Dr. Manis, Boston Children's Hospital/Harvard), clinical hematology (Dr. Azar,
MGH/Harvard) high-throughput microfluidics (Dr. Toner, lead mentor, MGH/Harvard), animal models and
advanced tissue culture (Dr. Haber, co-mentor, MGH/Harvard), nanoparticle kinetics (Dr. Bhatia, MIT),
computational modeling of blood cells (Dr. Koumoutsakos, Harvard), and closed-loop mouse-chip models (Dr.
Manalis, MIT). This additional training will prepare Dr. Mishra to lead an independent transdisciplinary research
program in hematology, sickle cell disease, and bioengineering.
项目摘要
镰状细胞病(SCD)影响着全世界数百万人。最近,干细胞基因治疗已经
成为SCD的潜在治疗选择。获得足够剂量的造血干细胞,
来自外周血的造血祖细胞(HSPC)对于这些基因疗法的成功至关重要。然而,在这方面,
单采产品中较高数量的RBC可能对有价值的造血干细胞的产量产生不利影响,
纯化过程中的干细胞(约46%损失)。因此,有一个迫切的未满足的需要,发展一个隔离,
可以从单采产品中有效回收造血干细胞的技术,无论其
血细胞比容为了应对这一挑战,我将开发一种微流控HSPC分离芯片(HSPC-iChip),
在1小时内从全部单采产物(~300 mL)中回收> 95%的CD34+细胞(目标1)。我必使
从癌症诊断领域到微流体技术领域的进展
血液学来实现这一点。我的中心假设是,HSPC-iChip可以分离出高度可行的,
功能性造血干细胞为了验证这一假设,我将对分离的干细胞进行基因编辑,
分析NBSGW小鼠中的植入、疾病矫正和人造血(Aim 1)。此外,根据
离心力的影响,镰状细胞患者的高凝状态可导致形成
细胞簇已经观察到这些簇使细胞收集界面不稳定,这需要高度的细胞分离。
熟练的单采操作员从镰状细胞患者中采集干细胞。一旦单采产品
收集,随后从其余细胞中纯化约1%的HSPC进一步需要专门的HSPC。
仪器和消耗品。这限制了镰状细胞基因治疗的广泛实施,
患者居住在低资源环境中,熟练劳动力、生物洁净室和财务能力
是受限制的。为了应对这一挑战,在目标2中,我将测试精密单采的可行性
一种可以直接从外周循环中分离HSPC的技术,
表面表位(CD34)。该项目的培训目标是提供米什拉博士-谁拥有强大的
微流控和细胞分选背景,以及来自领先先驱的额外科学培训,
血红蛋白病的治疗性基因编辑(Bauer博士,波士顿儿童医院/哈佛),干细胞
单采血液成分术和病理学(Manis博士,波士顿儿童医院/哈佛),临床血液学(Azar博士,
MGH/哈佛)高通量微流体(Toner博士,首席导师,MGH/哈佛),动物模型和
高级组织培养(Haber博士,共同导师,MGH/哈佛),纳米颗粒动力学(Bhatia博士,麻省理工学院),
血细胞的计算模型(Koumoutsakos博士,哈佛)和闭环小鼠芯片模型(Koumoutsakos博士,哈佛大学)。
Manalis,MIT)。这项额外的培训将使米什拉博士能够领导一项独立的跨学科研究。
血液学、镰状细胞病和生物工程专业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avanish Mishra其他文献
Avanish Mishra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 13.39万 - 项目类别:
Standard Grant