CAREER: Passive Vision -- What Can Be Learned by a Stationary Observer
职业:被动视觉——固定观察者可以学到什么
基本信息
- 批准号:0546383
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CAREER: Passive Vision -- What Can Be Learned by a Stationary ObserverPassive Vision is the analysis of video from a camera that is not moving. Many cameras do not move, and continually watch a specific scene -- an ATM, an airport security desk, or a traffic intersection -- for months or years. Much as Active Vision (the ability to intentionally control camera motion) simplifies problems in structure from motion, Passive Vision simplifies statistical image analysis by observing statistics of the same scene for very long time periods.This project develops a framework to study the statistics of fixed-viewpoint video. General statistics of natural video underlie current models of image and video compression and provide a statistical context for general image processing. But for video taken from a single viewpoint, the same analytic tools find much more specific statistical correlations, and these correlations relate to important scene features. For example, image regions that share geometric features such as surface normal and depth have a correlated responses to natural lighting changes. A tree waving in the wind tends to move all at the same time.Furthermore, automated tools that develop statistics of specific video sequences, accumulated over time, promise to ground a number of probabilistic algorithms in surveillance. Surprisingly simple, local statistics of image derivatives find anomalous objects in scenes with significant background motions and find complicated patterns of motions of objects in a scene. Within surveillance, characterizing the statistics of background variations captured over weeks or months provides a foundation to more formally address questions of slow background drift (due to clouds, shadows, or seasons), and when or whether moving objects that stop should be included in the background.This research program formalizes heuristic approaches to key problems in surveillance and offers a broader understanding of the statistics of natural images. This provides the foundation for a potentially large body of research in learning scene-specific algorithms for image representation and coding, image de-noising, object recognition, anomaly detection, and scene annotation --- key problems in using Computer Vision to address current Homeland Security needs.Project web page:http://www.cse.wustl.edu/~pless/PassiveVision.html
职业:被动视觉--静止的观察者能学到什么被动视觉是对来自不动的摄像机的视频进行分析。 许多摄像头不会移动,而是连续几个月或几年地监视特定的场景-自动取款机,机场安检台或交通路口。 就像主动视觉(主动控制摄像机运动的能力)简化了从运动到结构的问题一样,被动视觉通过观察同一场景的统计数据来简化统计图像分析。本项目开发了一个框架来研究固定视点视频的统计数据。 自然视频的一般统计数据是当前图像和视频压缩模型的基础,并为一般图像处理提供统计背景。 但是对于从单一视角拍摄的视频,相同的分析工具发现了更具体的统计相关性,并且这些相关性与重要的场景特征有关。 例如,共享诸如表面法线和深度的几何特征的图像区域具有对自然光照变化的相关响应。 一棵在风中摇曳的树往往会同时移动。此外,自动化工具可以对特定的视频序列进行统计,随着时间的推移而积累,有望为监控中的许多概率算法奠定基础。令人惊讶的简单,图像导数的局部统计发现具有显著背景运动的场景中的异常对象,并且发现场景中的对象的运动的复杂模式。 在监测中,表征在数周或数月内捕获的背景变化的统计数据为更正式地解决缓慢背景漂移问题提供了基础(由于云、阴影或季节),以及何时或是否应将停止的移动物体包括在背景中。该研究计划正式提出了启发式方法来解决监视中的关键问题,并提供了对自然图像统计的更广泛理解。 这为潜在的大量研究提供了基础,这些研究涉及学习特定场景的图像表示和编码算法、图像去噪、对象识别、异常检测和场景注释--这些是使用计算机视觉解决当前国土安全需求的关键问题。http://www.cse.wustl.edu/~pless/PassiveVision.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Pless其他文献
Characterizing the Visual Social Media Environment of Eating Disorders
描述饮食失调的视觉社交媒体环境
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Samsara N. Counts;J. Manning;Robert Pless - 通讯作者:
Robert Pless
Do you see what I see: crowdsource annotation of captured scenes
你看到我看到的了吗:捕获场景的众包注释
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Hipp;Deepti Adlakha;R. Gernes;A. Kargol;Robert Pless - 通讯作者:
Robert Pless
Shape Background Modeling : The Shape of Things That Came
形状背景建模:事物的形状
- DOI:
10.1109/wmvc.2007.35 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Nathan Jacobs;Robert Pless - 通讯作者:
Robert Pless
Structured Light Field Design for Correspondence Free Rotation Estimation
用于对应自由旋转估计的结构光场设计
- DOI:
10.1109/iccphot.2015.7168376 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ian Schillebeeckx;Robert Pless - 通讯作者:
Robert Pless
The full degree spanning tree problem
全度生成树问题
- DOI:
10.1002/1097-0037(200012)36:4 - 发表时间:
1999 - 期刊:
- 影响因子:1.1
- 作者:
R. Bhatia;S. Khuller;Robert Pless;Yoram J. Sussmann - 通讯作者:
Yoram J. Sussmann
Robert Pless的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Pless', 18)}}的其他基金
SaTC: CORE: Medium: Collaborative: Privacy Attacks and Defense Mechanisms in Online Social Networks
SaTC:核心:媒介:协作:在线社交网络中的隐私攻击和防御机制
- 批准号:
1704397 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Analyzing Images Through Time
CGV:大型:协作研究:随时间分析图像
- 批准号:
1111398 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Continental-Scale Monitoring, Modeling and Forecasting of Phenological Responses to Climate Change
合作研究:大陆尺度气候变化物候响应的监测、建模和预测
- 批准号:
1065734 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: ImageQuest: Citizens Advancing Biology with Calibrated Imaging and Validated Analysis
合作研究:ImageQuest:公民通过校准成像和验证分析推进生物学发展
- 批准号:
1053554 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Non-Parametric Representations of Motions and Actions in Video
视频中运动和动作的非参数表示
- 批准号:
0413291 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Sites: Summer Undergraduate Research Program
REU 站点:暑期本科生研究计划
- 批准号:
0139576 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
3次元トポロジカル欠陥が織りなすpassive/active液晶の時空間ダイナミクス:開拓と制御
3D拓扑缺陷编织的被动/主动液晶的时空动力学:开发和控制
- 批准号:
24K00593 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Practical multi-receiver passive radar with low-cost synchronisation
具有低成本同步功能的实用多接收机无源雷达
- 批准号:
DP240102502 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
- 批准号:
2327229 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Augmenting Passive Physical Interfaces into Adaptive Interfaces
职业:将被动物理接口增强为自适应接口
- 批准号:
2340120 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Assessing the role of the lithospheric mantle during passive margin development - insights from the South Atlantic African margin
评估岩石圈地幔在被动边缘发育过程中的作用 - 来自南大西洋非洲边缘的见解
- 批准号:
2305552 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
STTR Phase I: ActiveLens: Enabling Stationary Occupancy Detection of Passive Infrared Motion Sensors
STTR 第一阶段:ActiveLens:实现被动红外运动传感器的静止占用检测
- 批准号:
2341560 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
StegoSolar v2 – enhanced solar PV performance through passive cooling
StegoSolar v2 — 通过被动冷却增强太阳能光伏性能
- 批准号:
10103130 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Demonstrator
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Passive Samplers for Equitable Monitoring of Drinking Water Quality
NSF 融合加速器轨道 K:用于公平监测饮用水质量的被动采样器
- 批准号:
2344232 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant