CAREER: Nonspherical, Active, and "Inverted" Bases for Optimized Photonic Crystal Design
职业:用于优化光子晶体设计的非球形、有源和“倒置”底座
基本信息
- 批准号:0547976
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-15 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TechnicalThis project focuses on synthesis and characterization of inorganic colloids with tailoredmorphology and composition for greater understanding and fabrication of three-dimensional photonic crystal structures. New configurations and functionality will be explored through research on photonic crystals with nonspherical and active colloids as bases. Realization of photonic band gap materials (photonic crystals) operating in the near infrared and visible regions relies on ordered lattices of monodispersed, or uniform sized, nano- and mesoscale particles. This overcomes limitations of traditional colloidal building blocks such as silica (SiO2) and polystyrene spheres, which have poor optical function (low refractive index) and cannot produce the diverse packing arrangements necessary to fulfill the most promising enhancements in optical properties expected from photonic crystals. Monodispersed colloids with functionality (metals, semiconductors, magnetic ceramics, etc.) are promising for a variety of electrooptic applications, but have not been widely available. In the proposed research, techniques to expand colloid composition and morphology control will be studied to produce high refractive index monodispersed colloids including non-spherical, core-shell,hollow, and luminescent particles. Fields and templates made by lithography will be utilized in addition to self-assembly strategies to organize the particles. Modeling the assembly optical properties will enable refinement of the photonic crystal design requirements for several types of non-spherical building blocks. The research approach also includes the use of characterization techniques to image electromagnetic modes within the assemblies. Thus, theoretical photonic band calculations will be directly correlated with the structure and properties of the new photonic crystal materials. Better understanding of the effect of tailoring single particle properties (including symmetry reduction) on photonic band characteristics is sought and anticipated. Understanding of the relationship between material topology and function will aid in achieving new functional photonic crystal structuresNon-TechnicalBroader Impact. Research will be closely integrated with education and outreach efforts. An outreach activity is proposed to build an appreciation for materials science and engineering at the pre-collegiate level through challenging "play" and cognitive activities that integrate art and technology. The jigsaw puzzle outreach to middle school students uses scanning electron microscopy art as a tool in science and engineering education. The PI also plans to incorporate her current research ideas and methods in fine particle technology and self-assembly into a new interactive course offering which will strengthen the linkage between graduate and undergraduate materials science and engineering education. The approach is novel and its evaluation has potential to enhance science studies research into engineering education. In addition, activities are planned that encourage female undergraduates attending Historically Black Colleges and Universities to engage in summer research experiences in nano- and mesoscale systems. This has the potential to strengthen network relationships between the Cornell University Department of Materials Science and Engineering and the physical science and engineering departments (and faculty) at minority serving institutions. It is also expected to lead to increased minority female graduate school applicants and admissions.
技术本项目主要研究无机胶体的合成和表征,这些无机胶体具有特定的形貌和组成,以更好地理解和制造三维光子晶体结构。通过对以非球形和活性胶体为基底的光子晶体的研究,将探索新的构型和功能。光子带隙材料(光子晶体)在近红外和可见光区域中工作的实现依赖于单分散或均匀尺寸的纳米和介观尺度颗粒的有序晶格。这克服了传统胶体构建块如二氧化硅(SiO2)和聚苯乙烯球的局限性,其具有差的光学功能(低折射率),并且不能产生实现光子晶体所期望的光学性质的最有前途的增强所必需的多样的堆积布置。具有功能性的单分散胶体(金属、半导体、磁性陶瓷等)对于各种电光应用是有希望的,但是还没有被广泛使用。在拟议的研究中,将研究扩大胶体组成和形态控制的技术,以生产高折射率的单分散胶体,包括非球形,核壳,中空和发光颗粒。除了自组装策略之外,还将利用光刻技术制成的场和模板来组织粒子。对组件光学特性进行建模将使得能够细化几种类型的非球形构建块的光子晶体设计要求。研究方法还包括使用表征技术来成像组件内的电磁模式。因此,理论光子能带计算将直接与新的光子晶体材料的结构和性能相关。更好地理解剪裁单粒子属性(包括对称性减少)对光子带特性的影响,寻求和预期。理解材料拓扑结构和功能之间的关系将有助于实现新的功能光子晶体结构。研究工作将与教育和外联工作密切结合。一个外展活动,建议建立一个欣赏材料科学和工程在大学预科水平通过具有挑战性的“玩”和认知活动,结合艺术和技术。拼图推广到中学生使用扫描电子显微镜艺术作为科学和工程教育的工具。PI还计划将她目前在细颗粒技术和自组装方面的研究思想和方法纳入一个新的互动课程,这将加强研究生和本科生材料科学与工程教育之间的联系。该方法是新颖的,它的评估有可能提高科学研究工程教育。此外,还计划开展活动,鼓励在传统黑人学院和大学就读的女本科生参加纳米和中尺度系统的夏季研究。这有可能加强康奈尔大学材料科学与工程系与少数民族服务机构的物理科学和工程系(和教师)之间的网络关系。预计这也将导致少数民族女性研究生院申请人和入学人数的增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chekesha Watson其他文献
Chekesha Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chekesha Watson', 18)}}的其他基金
Partial Order Colloidal Phases as Photonic Solids
作为光子固体的偏序胶体相
- 批准号:
1508592 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Atypical Photonic Slabs by Quasi-2D Colloidal Self-Assembly
准二维胶体自组装非典型光子板
- 批准号:
1105243 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
NSF-DFG Confine: Building functional supraparticles through directed assembly of nonspherical nanoparticles under confinement
NSF-DFG Confine:通过在限制下定向组装非球形纳米粒子来构建功能性超粒子
- 批准号:
2223453 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Anisotropic turbulent clustering mechanism of gravitational-settling spherical and nonspherical inertial particles
重力沉降球形和非球形惯性粒子的各向异性湍流聚类机制
- 批准号:
17K14598 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nonspherical primordial black hole formation
非球形原初黑洞的形成
- 批准号:
16K17688 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Formation of monodisperse, nonspherical emulsion droplets upon stabilization by solid particles and bilayer forming molecules
通过固体颗粒和双层形成分子稳定形成单分散、非球形乳液液滴
- 批准号:
265203182 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Research Fellowships
Production of monodisperse nonspherical solid lipid microcapsules loaded with food functional components
食品功能成分单分散非球形固体脂质微胶囊的制备
- 批准号:
24760656 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Spectroscopic properties of dye aggregates on the spherical and nonspherical noble metal nanoparticles
球形和非球形贵金属纳米颗粒上染料聚集体的光谱特性
- 批准号:
23655184 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Jamming and Glassy Behavior in Systems with Nonspherical Particles and Constrained by Chain Connectivity
具有非球形颗粒且受链连接性约束的系统中的干扰和玻璃态行为
- 批准号:
1006537 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Efficiency of nonspherical and non-uniform cloud scattering processes and implementation to atmospheric radiative transfer models
非球形和非均匀云散射过程的效率以及大气辐射传输模型的实现
- 批准号:
21740342 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A General Circulation Model (GCM) Investigation of the Direct Radiative Forcing of Spherical and Nonspherical Aerosols
球形和非球形气溶胶直接辐射强迫的大气环流模型 (GCM) 研究
- 批准号:
0437349 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Influence of Nonspherical Bubble Collapse on Decomposition and Luminescence
非球形气泡破裂对分解和发光的影响
- 批准号:
15560150 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)