SGER: Assessment of the Severe Weather Environment Simulated by Global Climate Models
SGER:全球气候模型模拟的恶劣天气环境评估
基本信息
- 批准号:0550178
- 负责人:
- 金额:$ 5.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-15 至 2007-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Severe thunderstorms and tornados are very important mesoscale weather events in the central United States because of their high frequency and intensity in this region, and the damage and loss of life that they cause every year. Recently, it has been shown that the frequency of favorable conditions for significant severe thunderstorms and tornados can be estimated for the United States and other regions using global atmospheric re-analyses with spatial resolution on the order of 200 km and temporal resolution of 6 hours. Global climate models are unable to simulate severe thunderstorms and tornados because their spatial resolution is too coarse to be able to simulate such mesoscale events. However, they should be able to simulate the environmental conditions under which such severe weather develops, including abundant lower tropospheric moisture, steep mid-tropospheric lapse rates, and strong tropospheric wind shear. High space and time resolution data from control simulations with global climate models archived at NCAR will be used to estimate the frequency of favorable conditions for severe weather, as simulated by the models. The climatological distribution of the severe weather environment in the model simulations will be compared with that from the reanalyses, including the seasonal and geographical variations and its interannual variability. The frequency distributions of the important factors determining the severe weather environment also will be assessed in the models. The research is exploratory. Only recently have climate model data sets with sufficient vertical, horizontal and time resolution become available to undertake this study. Outcomes from this research will include a detailed assessment of global climate model simulations of the environmental conditions determining severe weather. This will provide a better understanding of some of the causes of model problems with simulation of warm season intense continental convective. Broader Impacts: If the approach is successful, subsequent research will provide estimates for the first time of changes in the frequency of severe weather in the United States under future climate conditions. The method can then be applied to other climate model simulations to provide greater confidence in the estimates of future changes in the severe weather environment. In addition to the scientific outcomes, there will be important training outcomes from this project. The graduate student employed on this project will gain valuable training and experience in climate diagnostics, climate modeling, and severe weather, which will allow him/her to contribute better to future research and development in climate change and its impacts in the United States. In addition, the PIs anticipate that the datasets generated will be used in the OU National Weather Center's NSF-sponsored Research Experiences for Undergraduates as the basis for projects.
强雷暴和龙卷风是美国中部非常重要的中尺度天气事件,因为它们在该地区的频率和强度很高,每年都造成生命损失。最近的研究表明,利用空间分辨率为200公里、时间分辨率为6小时的全球大气再分析,可以估计美国和其他地区发生重大严重雷暴和龙卷风的有利条件的频率。全球气候模式无法模拟严重的雷暴和龙卷风,因为它们的空间分辨率太粗糙,无法模拟这种中尺度事件。然而,他们应该能够模拟这种恶劣天气发展的环境条件,包括丰富的低对流层水分,陡峭的对流层中层直减率和强烈的对流层风切变。来自NCAR存档的全球气候模型控制模拟的高空间和时间分辨率数据将用于估计模型模拟的恶劣天气有利条件的频率。模式模拟的恶劣天气环境的气候分布将与再分析的气候分布进行比较,包括季节和地理变化及其年际变化。在模式中还将评估决定恶劣天气环境的重要因素的频率分布。研究是探索性的。只是在最近才有足够的垂直、水平和时间分辨率的气候模型数据集可供进行这项研究。这项研究的成果将包括对全球气候模型模拟决定恶劣天气的环境条件的详细评估。这将提供一个更好的理解模式问题的一些原因与暖季强烈大陆对流的模拟。更广泛的影响:如果该方法成功,后续研究将首次提供未来气候条件下美国恶劣天气频率变化的估计。然后,该方法可以应用于其他气候模式模拟,以提高对恶劣天气环境未来变化估计的信心。除了科学成果外,该项目还将产生重要的培训成果。该项目的研究生将获得气候诊断,气候建模和恶劣天气方面的宝贵培训和经验,这将使他/她能够更好地为未来的气候变化及其在美国的影响的研究和发展做出贡献。此外,PI预计,生成的数据集将用于美国国家气象中心的NSF赞助的本科生研究经验作为项目的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Karoly其他文献
David Karoly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Karoly', 18)}}的其他基金
SGER: Simple Indices of Climate Variability and Change
SGER:气候变率和变化的简单指数
- 批准号:
0444284 - 财政年份:2004
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
相似国自然基金
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
CAREER: Decoding The Spatiotemporal Evolution of Soil Gradation under Severe Loadings: A New Paradigm for Stability Assessment of Critical Geo-Structures
职业:解码严重荷载下土壤级配的时空演化:关键地质结构稳定性评估的新范式
- 批准号:
2237332 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Integrated Assessment of Soil Conservation and Watershed Sediment Dynamics in the Severe Meteorological Phenomena
严重气象现象下土壤保持与流域泥沙动态综合评价
- 批准号:
22K05883 - 财政年份:2022
- 资助金额:
$ 5.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural Safety Assessment and Strengthening of Concrete Dams and Gated Spillways Subjected to Severe Loading Conditions
承受恶劣荷载条件的混凝土坝和闸控溢洪道的结构安全评估和加固
- 批准号:
RGPIN-2019-04568 - 财政年份:2022
- 资助金额:
$ 5.26万 - 项目类别:
Discovery Grants Program - Individual
Comprehensive Outcome Assessment after Severe Acute Brain Injury: Advanced Symptoms and End-of-Life Care Needs
严重急性脑损伤后的综合结果评估:晚期症状和临终护理需求
- 批准号:
10404565 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Comprehensive Outcome Assessment after Severe Acute Brain Injury: Advanced Symptoms and End-of-Life Care Needs
严重急性脑损伤后的综合结果评估:晚期症状和临终护理需求
- 批准号:
10596649 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Improving Maternity Outcomes by Engaging Stakeholders in a Holistic Assessment of the Social and Clinical Determinants of Severe Maternal Morbidity in Canada - a Feasibility Study
通过让利益相关者参与对加拿大严重孕产妇发病的社会和临床决定因素的全面评估来改善孕产成果 - 一项可行性研究
- 批准号:
444788 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Operating Grants
Structural Safety Assessment and Strengthening of Concrete Dams and Gated Spillways Subjected to Severe Loading Conditions
承受恶劣荷载条件的混凝土坝和闸控溢洪道的结构安全评估和加固
- 批准号:
RGPIN-2019-04568 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Discovery Grants Program - Individual
Comprehensive Outcome Assessment after Severe Acute Brain Injury: Advanced Symptoms and End-of-Life Care Needs
严重急性脑损伤后的综合结果评估:晚期症状和临终护理需求
- 批准号:
10206321 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Automated Frame-by-Frame Assessment of Lung Ultrasound Imaging in Severe COVID-19 Patients Using Machine Learning
使用机器学习对重症 COVID-19 患者的肺部超声成像进行自动逐帧评估
- 批准号:
550470-2020 - 财政年份:2020
- 资助金额:
$ 5.26万 - 项目类别:
Alliance Grants