4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
基本信息
- 批准号:10735953
- 负责人:
- 金额:$ 23.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D MRIAdoptedAffectAnatomyAortic DiseasesAortic Valve StenosisAreaBreathingCatheterizationCessation of lifeChestChronicClassificationClinicalCorrelation StudiesDataDiagnosticDiagnostic ProcedureDobutamineDobutamine Stress EchocardiographyDoppler EchocardiographyDropsEchocardiographyEnrollmentEquationGoalsHeartHeart Valve DiseasesHeart failureImageLearningLeft Ventricular Ejection FractionLiquid substanceMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModalityMorphologic artifactsNatureNoiseOperative Surgical ProceduresPatientsProtocols documentationRestRiskSafetyScanningSeveritiesSeverity of illnessStratificationStressSubgroupSurvival RateSymptomsSyncopeTherapeutic EmbolizationTrainingWorkadverse outcomeaging populationanatomic imagingaortic valveaortic valve disorderaortic valve replacementdata spacedeep learninghemodynamicshuman subjectimaging modalityimprovedpressurerespiratorysimulationtomographyultrasound
项目摘要
Degenerative aortic stenosis is a progressive valvular heart disease affecting the aging population and when
hemodynamically significant is associated with serious adverse outcomes, such as heart failure, syncope, and
death. Although, symptomatic classical severe aortic stenosis (AS), wherein aortic valve anatomical or effective
area is ≤ 1.0 𝑐𝑚2 and mean gradient ≥ 40 mmHg raises no diagnostic dilemma, patients with low gradient aortic
stenosis (i.e., mean gradient < 40 mmHg) that may be severe (i.e., aortic valve area ≤ 1.0 𝑐𝑚2) remain a
challenge for determining the true severity of aortic stenosis and present a significant unmet clinical need. The
discordance between aortic valve area of ≤ 1.0 𝑐𝑚2 and mean gradient < 40 mmHg is encountered in as many
as 30 to 40% of patients with aortic valve area ≤ 1.0 𝑐𝑚2 by transthoracic echocardiography (TTE). In patients
with these discordant findings, the true severity is uncertain and have led to the use of dobutamine stress
echocardiography (DSE). Based on DSE, one can classify the potentially severe low-gradient subjects into 4
distinct subgroups a) Low gradient severe aortic stenosis (LGS): aortic valve area of ≤ 1.0 𝑐𝑚2 and a mean
gradient of ≥ 40 mmHg with DSE. b) Low gradient pseudo-severe aortic stenosis (LGPS): aortic valve area of >
1.0 𝑐𝑚2 and a mean gradient of < 40 mmHg with DSE. c) Low gradient indeterminate aortic stenosis severity
(LGI): aortic valve area of ≤ 1.0 𝑐𝑚2 and a mean gradient of < 40 mmHg with DSE. d) Finally, aortic valve area
of > 1.0 𝑐𝑚2 and a mean gradient of ≥ 40 mmHg with DSE are classified as moderate or less severe aortic
stenosis (LSA). Nearly one-third of patients classified as LGS are classified as LGPS with DSE (6). Further,
compounding the concern in patients classified as LGPS, LGI, LSA is that they often manifest with symptoms
potentially attributable to severe AS suggesting an initial misclassification perhaps due to measurement errors.
Compared to echo, with MRI, the velocities can be measured in all 3D directions and due to its tomographic
nature, no geometric assumptions are required. The hypothesis of the study is that our planned CMR methods
which we will develop based on previous work will be able to better stratify these AS subjects. Our specific aims
are: 1) We will develop efficient rest and dobutamine stress 4D Spiral flow imaging protocols based on k-space
dependent respiratory gating. 2) We have recently developed a Deep Learning framework which based on
Computational Fluid Dynamics (CFD) simulations of training data learns to directly map velocities to pressures.
This will be adapted to measure the transvalvular pressure gradients (TVPG) in human subjects and validated.
3) In 40 subjects with potentially severe low gradient AS (10 in each of the LGS, LGPS, LGI, LSA), a TTE study,
and a CMR study will be performed both at rest and under dobutamine stress. To validate, TVPG will be
measured with cath in a group with n=10 of moderate AS (MAS) subjects undergoing cath for other purposes.
This group will also undergo TTE and CMR studies. Subjects with severe AS were not selected for cath for safety
reasons. Classification across modalities, flow, velocity, pressure, and orifice area will be statistically correlated.
退行性主动脉瓣狭窄是一种进行性心脏瓣膜病,多发于老年人群和发病时间
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
4Dflow-VP-Net: A deep convolutional neural network for noninvasive estimation of relative pressures in stenotic flows from 4D flow MRI.
- DOI:10.1002/mrm.29791
- 发表时间:2023-11
- 期刊:
- 影响因子:3.3
- 作者:Nath, Ruponti;Kazemi, Amirkhosro;Callahan, Sean;Stoddard, Marcus F.;Amini, Amir A.
- 通讯作者:Amini, Amir A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMIR A AMINI其他文献
AMIR A AMINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMIR A AMINI', 18)}}的其他基金
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6402793 - 财政年份:2000
- 资助金额:
$ 23.48万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6197519 - 财政年份:2000
- 资助金额:
$ 23.48万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6813757 - 财政年份:2000
- 资助金额:
$ 23.48万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6527304 - 财政年份:2000
- 资助金额:
$ 23.48万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6184044 - 财政年份:1998
- 资助金额:
$ 23.48万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
2471547 - 财政年份:1998
- 资助金额:
$ 23.48万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6389619 - 财政年份:1998
- 资助金额:
$ 23.48万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6043944 - 财政年份:1998
- 资助金额:
$ 23.48万 - 项目类别:
相似海外基金
Disease Analysis Based on Respiratory Displacement Estimation to All-field of Lung from Thoracic 4D-MRI and Fusion with CT
基于胸部 4D-MRI 肺部全视野呼吸位移估计并与 CT 融合的疾病分析
- 批准号:
22K18181 - 财政年份:2022
- 资助金额:
$ 23.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying risk factors for the post replacement-related complications following aortic valve replacement in patients with severe aortic valve stenosis with 4D-MRI blood flow dynamics imaging.
通过 4D-MRI 血流动力学成像识别严重主动脉瓣狭窄患者主动脉瓣置换术后相关并发症的危险因素。
- 批准号:
19K17510 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
9980333 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10204956 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10653082 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10413106 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别:
Numerical Prediction and Measurement of Infrarenal Abdominal Aortic Aneurysm Blood Flow using 4D MRI
使用 4D MRI 进行肾下腹主动脉瘤血流的数值预测和测量
- 批准号:
511305-2017 - 财政年份:2017
- 资助金额:
$ 23.48万 - 项目类别:
University Undergraduate Student Research Awards
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
8943325 - 财政年份:2015
- 资助金额:
$ 23.48万 - 项目类别:
Developement of 4D MRI microscopy for monitoring growth process of rhizome axillary bud
开发用于监测根茎腋芽生长过程的4D MRI显微镜
- 批准号:
15K04719 - 财政年份:2015
- 资助金额:
$ 23.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
9319686 - 财政年份:2015
- 资助金额:
$ 23.48万 - 项目类别:














{{item.name}}会员




