Collaborative Research: Methods for Analyzing Large Dimensional Data
合作研究:大维数据分析方法
基本信息
- 批准号:0551275
- 负责人:
- 金额:$ 13.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Economists are fortunate to have access to lots of data, but the econometric tools that can beused to digest all the information remain rather limited. The standard assumption underlyingasymptotic analysis that treats N (number of cross-section units) as fixed and let T (the number oftime series observations) to tend to infinity is no longer appropriate for analyzing large data panels.The theme of the PIs research is efficient use of information in a large panel of data, say, X. The PI'swork will be organized around three projects. Project A continues the PIs previous work in using factor models to reduce the dimension of X. With N large, there is a need to carefully downweigh noisy data. The more difficult problem is to deal with the cross-section correlation in idiosyncratic errors that are not pervasive enough to be called common factors, but are strong enough to adversely affect the precision of the estimated common factors. In this grant, the PI's seek to develop moreefficient principal component estimators to deal with both problems.Project B continues to exploit the relevant information in X, but now the goal is to predictsome series, y, and the PI's step outside of the factor framework. The problem here is to pick out a setof reasonably strong predictors for y, but that the predictors are not very highly correlated witheach other, or else there will be too much information overlap. The PI's will use penalized regressions tostudy optimal shrinkage. The goal is to establish data dependent rules for the penalty parametersin a time series setting. For example, stationary and non-stationary predictors will be penalized atdifferent rates. Both in and out-of-sample predictions will be considered.Project C aims to develop an efficient estimator for panel cointegration in the presence of cross-section common shocks, which drive the comovement of economic variables. The framework allowsfor cross-sectionally correlated errors and encompasses the fixed effects model as a special case.Broader Impact and Intellectual Merit Standard principal component estimates are nowused in many forecasting exercises and in policy analysis. Improved factor estimates will inevitablyimpact these work. Project A should lead directly to better estimates for the number of factors,which has a natural role in asset pricing models and in demand analysis.In addition to providing results of immediate use to forecasters, Project B also impacts macroe-conomic analysis, as many economic models involve expectational variables. Economic hypothesescannot be fairly tested when the forecasts/conditional expectations are not properly modelled. Fur-thermore, instead of predicting y, a researcher might just want to predict if y is higher, lower, or stays thesame. The many predictors framework is potentially useful in broader contexts.When working with economic data, the assumption that the errors are iid across units is un-appealing. Project C tackles efficient estimation when the errors are cross-sectionally correlated.The results will be useful for economic analysis involving data for countries/industries/firms.
经济学家很幸运,可以获得大量数据,但可以用来消化所有信息的计量经济学工具仍然相当有限。渐近分析的标准假设是将N(横截面单元数)视为固定的,并让T(时间序列观测值)趋于无穷大,这种假设不再适用于分析大型数据面板。PI研究的主题是有效利用大量数据面板中的信息,例如X。PI的工作将围绕三个项目进行组织。项目A在使用因子模型降低X的维度方面延续了PI先前的工作。在N较大的情况下,需要小心地降低噪声数据的权重。更困难的问题是处理特殊误差中的横截面相关性,这些特殊误差不够普遍,不足以称为公因子,但足够强,足以对估计公因子的精度产生不利影响。在这项拨款中,PI寻求开发更有效的主成分估计器来处理这两个问题。项目B继续利用X中的相关信息,但现在的目标是预测一些序列,y,以及PI在因素框架之外的步骤。这里的问题是为y挑选一组相当强的预测值,但预测值彼此之间的相关性不是很高,否则会有太多的信息重叠。PI将使用惩罚回归来研究最佳收缩。目标是为时间序列设置中的惩罚参数建立数据依赖规则。例如,平稳和非平稳预测者将受到不同比率的惩罚。同时考虑样本内和样本外的预测。项目C的目标是开发一个有效的面板协整估计器,用于在存在横截面共同冲击的情况下,驱动经济变量的协变。该框架允许横截面相关误差,并将固定效应模型作为特例包含在内。广泛影响和智力价值标准主成分估计现在用于许多预测工作和政策分析。改进的因素估计将不可避免地影响这些工作。项目A应该直接导致对因素数量的更好估计,这在资产定价模型和需求分析中具有天然的作用。除了向预测者提供立即可用的结果外,项目B还影响宏观经济分析,因为许多经济模型涉及预期变量。当预测/条件预期没有正确建模时,经济假说就无法得到公平的检验。此外,研究人员可能只想预测y是更高、更低,还是保持不变,而不是预测y。多个预测者框架在更广泛的背景下可能有用。在处理经济数据时,假设误差在不同单位之间是独立的,这是没有吸引力的。项目C解决了当误差是横截面相关时的有效估计。结果将对涉及国家/行业/公司的数据的经济分析有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jushan Bai其他文献
RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
大维因子分析的最新进展
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jushan Bai;Serena Ng - 通讯作者:
Serena Ng
Testing Panel Cointegration with Unobservable Dynamic Common Factors that are Correlated with the Regressors
使用与回归量相关的不可观察的动态公因子测试面板协整
- DOI:
10.1111/ectj.12002 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jushan Bai;Josep Lluís Carrion - 通讯作者:
Josep Lluís Carrion
Likelihood Approach to Dynamic Panel Models with Interactive Effects
- DOI:
10.2139/ssrn.2332992 - 发表时间:
2013-09 - 期刊:
- 影响因子:0
- 作者:
Jushan Bai - 通讯作者:
Jushan Bai
A Quantile-based Asset Pricing Model
基于分位数的资产定价模型
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
T. Ando;Jushan Bai;Mitohide Nishimura;Jun Yu - 通讯作者:
Jun Yu
The likelihood ratio test for structural changes in factor models
因子模型结构变化的似然比检验
- DOI:
10.1016/j.jeconom.2023.105631 - 发表时间:
2022 - 期刊:
- 影响因子:6.3
- 作者:
Jushan Bai;Jiangtao Duan;Xu Han - 通讯作者:
Xu Han
Jushan Bai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jushan Bai', 18)}}的其他基金
Structural Changes in High Dimensional Factor Models
高维因子模型的结构变化
- 批准号:
1658770 - 财政年份:2017
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
New Approaches for Dynamic Panel Data Analysis
动态面板数据分析的新方法
- 批准号:
1357598 - 财政年份:2014
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Topics in Dynamic Panel Data Analysis, Time-Varying Individual Heterogeneities, and Cross-Sectional Dependence
动态面板数据分析、时变个体异质性和横截面依赖性主题
- 批准号:
0962410 - 财政年份:2010
- 资助金额:
$ 13.33万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Factor Analysis of Large Dimensions
合作研究:大维度因子分析主题
- 批准号:
0424540 - 财政年份:2003
- 资助金额:
$ 13.33万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Factor Analysis of Large Dimensions
合作研究:大维度因子分析主题
- 批准号:
0137084 - 财政年份:2002
- 资助金额:
$ 13.33万 - 项目类别:
Continuing Grant
Econometrics of Dynamic Index-Threshold Models
动态指数阈值模型的计量经济学
- 批准号:
9896329 - 财政年份:1998
- 资助金额:
$ 13.33万 - 项目类别:
Continuing Grant
Econometrics of Dynamic Index-Threshold Models
动态指数阈值模型的计量经济学
- 批准号:
9709508 - 财政年份:1997
- 资助金额:
$ 13.33万 - 项目类别:
Continuing grant
GMM Estimation of Multiple Sturctural Changes
多重结构变化的 GMM 估计
- 批准号:
9414083 - 财政年份:1994
- 资助金额:
$ 13.33万 - 项目类别:
Continuing grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 13.33万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327892 - 财政年份:2024
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327893 - 财政年份:2024
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
- 批准号:
2319367 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Continuing Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant