Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
基本信息
- 批准号:2332442
- 负责人:
- 金额:$ 6.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will enable researchers in many fields of science to harness advanced computer algorithms to analyze complex data sets. In many fields, researchers seek to determine what hypotheses are supported by data collected in complex study designs. Data may be complex because they are collected in many locations, at many points in time, from related sampling units, under different sampling conditions, with different sample sizes, and/or with imperfect measurements. Such complexities arise in research fields such as biology, astronomy, education, environmental science, political science, and psychology, among others. When analyzing complex data, it can be difficult for researchers to determine which potential patterns are real and which are spurious. To solve this problem, researchers utilize computer algorithms to thoroughly explore all possible underlying relationships among variables that might explain the observed data. Such algorithms can be slow, costly, and difficult to create, so it is important to make them faster and easier for researchers to use. The investigators of this project have previously created a software package called NIMBLE (Numerical Inference for statistical Models using Bayesian and Likelihood Estimation) for this purpose. NIMBLE has been successfully used for many complex data analysis problems. Compared to other relevant software, NIMBLE enables researchers to use a wider range of algorithms and to customize algorithms to each research problem. This has allowed much faster performance in some cases, which in turn allows more comprehensive analysis of complex data. In the current project, the investigators will extend NIMBLE’s capabilities. They will make it possible to use some kind of accurate mathematical approximations for statistical calculations in combination with existing algorithms, which in turn will allow researchers to create new kinds of hybrid algorithms for data analysis. They will also make it possible to use certain kinds of very efficient calculations in some problems, which will greatly improve performance. The investigators will also provide support and training to users of the software as well as creating educational modules to help the next generation of undergraduate and graduate students learn to use these methods.NIMBLE is unique among hierarchical statistical modeling software because it combines a language for statistical models, a language for model-generic algorithms, and a compiler to generate and use C++ source code for models and algorithms. In the current project, NIMBLE will be extended to support hybrid methods by enabling algorithms to be nested within models. This will allow methods such as sparse grid quadrature to integrate over one set of model dimensions to achieve the calculations needed by another algorithm such as Markov chain Monte Carlo. In turn, this capability will allow composition of methods such as Laplace approximation and methods that use it. This project will also extend NIMBLE’s algorithm language to support sparse matrix algebra methods, allowing this efficient approach to be used by algorithm developers to enhance computational efficiency. Together, the advances in this project will enhance statistical research by enabling NIMBLE to serve as a hub for composition of models and methods, whereby a data analyst can create one statistical model and use many different methods with it. Finally, this project will include training and support for new and existing users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使许多科学领域的研究人员能够利用先进的计算机算法来分析复杂的数据集。在许多领域,研究人员试图确定在复杂的研究设计中收集的数据支持哪些假设。 数据可能是复杂的,因为它们是在许多地点、在许多时间点、在不同的取样条件下、以不同的样本大小和/或以不完善的测量从相关的取样单位收集的。 这种复杂性出现在研究领域,如生物学,天文学,教育,环境科学,政治学和心理学等。 在分析复杂数据时,研究人员可能很难确定哪些潜在模式是真实的,哪些是虚假的。 为了解决这个问题,研究人员利用计算机算法彻底探索可能解释观测数据的变量之间的所有可能的潜在关系。 这样的算法可能很慢,成本很高,而且很难创建,所以让研究人员更快,更容易使用是很重要的。 该项目的研究人员先前为此目的创建了一个名为NIMBLE(使用贝叶斯和似然估计的统计模型的数值推断)的软件包。 NIMBLE已成功用于许多复杂的数据分析问题。 与其他相关软件相比,NIMBLE使研究人员能够使用更广泛的算法,并为每个研究问题定制算法。 这在某些情况下允许更快的性能,从而允许对复杂数据进行更全面的分析。 在目前的项目中,研究人员将扩展NIMBLE的能力。 它们将使使用某种精确的数学近似与现有算法相结合进行统计计算成为可能,这反过来又将使研究人员能够创建用于数据分析的新型混合算法。 它们还将使在某些问题中使用某些非常有效的计算成为可能,这将大大提高性能。 研究人员还将为软件用户提供支持和培训,并创建教育模块,以帮助下一代本科生和研究生学习使用这些方法。NIMBLE在分层统计建模软件中是独一无二的,因为它结合了一种用于统计模型的语言,一种用于模型通用算法的语言,以及一个编译器来生成和使用C++源代码的模型和算法。 在当前的项目中,NIMBLE将被扩展到支持混合方法,使算法能够嵌套在模型中。 这将允许稀疏网格求积等方法在一组模型维度上进行积分,以实现另一种算法(如马尔可夫链蒙特卡罗)所需的计算。 反过来,这种能力将允许组合方法,如拉普拉斯近似和使用它的方法。该项目还将扩展NIMBLE的算法语言,以支持稀疏矩阵代数方法,允许算法开发人员使用这种有效的方法来提高计算效率。 总之,该项目的进展将通过使NIMBLE成为模型和方法组合的中心来加强统计研究,数据分析师可以创建一个统计模型并使用许多不同的方法。这个项目将包括对新用户和现有用户的培训和支持。这个奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Turek其他文献
Testing Fraternal Birth Order Effects and Antagonistic Effects for Homosexual Men: Power Comparison of Various Methods
- DOI:
10.1007/s10508-024-02820-w - 发表时间:
2024-03-04 - 期刊:
- 影响因子:2.900
- 作者:
Michel Raymond;Daniel Turek;Pierre-André Crochet - 通讯作者:
Pierre-André Crochet
Nested Adaptation of MCMC Algorithms
MCMC算法的嵌套自适应
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.4
- 作者:
D. Nguyen;P. Valpine;Y. Atchadé;Daniel Turek;Nick Michaud;C. Paciorek - 通讯作者:
C. Paciorek
IPM
2
: toward better understanding and forecasting of population dynamics
IPM 2:更好地理解和预测人口动态
- DOI:
10.1002/ecm.1364 - 发表时间:
2019 - 期刊:
- 影响因子:6.1
- 作者:
F. Plard;Daniel Turek;M. Grüebler;M. Schaub - 通讯作者:
M. Schaub
Bayesian non-parametric detection heterogeneity in ecological models
生态模型中的贝叶斯非参数检测异质性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.8
- 作者:
Daniel Turek;Claudia Wehrhahn;O. Gimenez - 通讯作者:
O. Gimenez
Integrated spatial models foster complementarity between monitoring programs in producing large-scale bottlenose dolphin indicators
综合空间模型促进监测计划之间在产生大规模宽吻海豚指标方面的互补性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Valentin Lauret;H. Labach;Daniel Turek;Sophie Laran;O. Gimenez - 通讯作者:
O. Gimenez
Daniel Turek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Turek', 18)}}的其他基金
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2152861 - 财政年份:2022
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
- 批准号:
2311950 - 财政年份:2023
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317826 - 财政年份:2023
- 资助金额:
$ 6.99万 - 项目类别:
Continuing Grant