Towards Improving Hurricane Intensity Forecasts
改进飓风强度预测
基本信息
- 批准号:0553491
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2008-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This study is centered around a suite of mesoscale models that are to be used for research on multi-model superensemble for the improvement of hurricane intensity forecasts. This research complements prior work on multi-model superensemble for hurricane tracks and intensity where a suite of large-scale models was used. The prior research demonstrated that the superensemble-based intensity forecasts are somewhat (~20%) superior to all of the participating member models. Since the intensity of a hurricane is expected to have mesoscale signatures, the notion that a suite of mesoscale models may prove to be very useful in this regard is being explored in this research. The recent multi-aircraft reconnaissance flights and the development of newer generation mesoscale models provide a unique opportunity for carrying out such experimentation. The component areas of science in this endeavor include: i) data assimilation within global and regional models, ii) prediction experiments from a suite of mesoscale models, iii) definition of the training and forecast phase of a mesoscale multi-model superensemble and iv) execution of forecasts for these phases. The intent is to examine superensemble based forecast validations and interpretations of model biases towards hurricane intensity predictions. Broader Impacts: Being able to provide improved hurricane intensity forecasts has major societal impacts. Hurricane Katrina is an excellent (however unfortunate) example where the hurricane modeling community faced a major challenge. Although atmospheric scientists cannot prevent the loss of life and property, they can work towards improving advance warning capabilities from improved modeling. The Principal Investigator will continue his long-standing cooperation with forecasters and researchers at the National Hurricane Center.
这项研究是围绕一套中尺度模式,将用于研究多模式超增强飓风强度预报的改进。 这项研究补充了以前的工作,多模式超级飓风的轨迹和强度,其中使用了一套大规模的模型。 先前的研究表明,基于超集合的烈度预测比所有参与的成员模型都有一定的上级优势(约20%)。 由于飓风的强度预计将有中尺度的签名,一套中尺度模型可能证明是非常有用的,在这方面的概念,在这项研究中正在探讨。最近的多飞机侦察飞行和新一代中尺度模型的开发为进行这种实验提供了一个独特的机会。 这一奋进的科学组成领域包括:i)全球和区域模式内的数据同化,ii)一套中尺度模式的预测实验,iii)中尺度多模式超级系统的训练和预报阶段的定义以及iv)这些阶段的预报执行。 其目的是研究基于超能量的预测验证和对飓风强度预测模型偏差的解释。更广泛的影响:能够提供更好的飓风强度预报具有重大的社会影响。 卡特里娜飓风是一个很好的例子(无论多么不幸),飓风建模社区面临着重大挑战。 虽然大气科学家无法防止生命和财产的损失,但他们可以通过改进模型来提高预警能力。 首席研究员将继续与国家飓风中心的预报员和研究人员进行长期合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
T. Krishnamurti其他文献
Mesoscale modeling for the rapid movement of monsoonal isochrones
季风等时线快速运动的中尺度建模
- DOI:
10.1002/asl.617 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Vinay Kumar;T. Krishnamurti - 通讯作者:
T. Krishnamurti
The value of adherence information during clinical pharmaceutical trials
临床药物试验中依从性信息的价值
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Emily Grayek;Baruch Fischhoff;Alexander L Davis;T. Krishnamurti - 通讯作者:
T. Krishnamurti
Mobile Remote Monitoring of Intimate Partner Violence Among Pregnant Patients During the COVID-19 Shelter-In-Place Order: Quality Improvement Pilot Study (Preprint)
COVID-19 就地庇护令期间怀孕患者亲密伴侣暴力的移动远程监控:质量改进试点研究(预印本)
- DOI:
10.2196/preprints.22790 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
T. Krishnamurti;Alexander L Davis;B. Quinn;Anabel F. Castillo;K. L. Martin;H. Simhan - 通讯作者:
H. Simhan
The Meteorological Environment of the Tropospheric Ozone Maximum Over the Tropical South Atlantic Ocean
热带南大西洋对流层臭氧最大值的气象环境
- DOI:
10.1029/93jd00322 - 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
T. Krishnamurti;H. Fuelberg;M. Sinha;D. Oosterhof;E. Bensman;V. Kumar - 通讯作者:
V. Kumar
Opportunity costs of postpartum care: A national survey of U.S. providers’ priorities and practice
产后护理的机会成本:对美国医疗服务提供者的优先事项和实践进行的全国调查
- DOI:
10.21203/rs.2.14685/v1 - 发表时间:
2019 - 期刊:
- 影响因子:4.4
- 作者:
T. Krishnamurti;H. Simhan;S. Borrero - 通讯作者:
S. Borrero
T. Krishnamurti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('T. Krishnamurti', 18)}}的其他基金
Impacts of Enhanced Cloud Condensation Nuclei (CCN) on the Organization of Convection for Monsoon Depressions
增强云凝结核(CCN)对季风低压对流组织的影响
- 批准号:
1241292 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Predicting Major Dry Spells of the Monsoon a Week to Ten Days in Advance
提前一周至十天预测季风的主要干旱期
- 批准号:
1047282 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Diverse Planetary Boundary Layer (PBL) Algorithms within Multimodels and the Design of Unified Boundary Layer Modeling for Improved Forecasts
多模型中的多种行星边界层 (PBL) 算法以及用于改进预测的统一边界层建模设计
- 批准号:
0636157 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
High Resolution Atmospheric/Chemical Transport Modeling for Asian Pollution
亚洲污染的高分辨率大气/化学物质传输模型
- 批准号:
0533966 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Parametrizing Convection Using Satellite-Retrieved Precipitation Profiles
使用卫星检索的降水剖面参数化对流
- 批准号:
0533108 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Weather and Climate Superensemble Forecasts from Multimodels
多模型的天气和气候超系预报
- 批准号:
0419618 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: ITR: Framework for Optimal Merging of Multi-sensor Spatial Data and Multi-model, Multi-analysis Ensemble Forecasts of Heavy Precipitation and Floods
合作研究:ITR:强降水和洪水多传感器空间数据和多模型、多分析集合预报的优化合并框架
- 批准号:
0311858 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mechanism of the Madden-Julian Oscillation (MJO) Viewed from Scale Interactions in the Frequency Domain
从频域尺度相互作用看马登-朱利安振荡 (MJO) 的机制
- 批准号:
0241517 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
US-India Cooperative Research: Planetary Boundary Layer Formulation for Improving Monsoon Forecasts
美印合作研究:改善季风预报的行星边界层公式
- 批准号:
0314677 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
US-India Cooperative Research: International Wavelet Analysis of Frequency Spectra for Monsoon Rainfall
美印合作研究:季风降雨频谱的国际小波分析
- 批准号:
0302172 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 20万 - 项目类别:
Fellowship
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Improving Resilience of MCDI for Water Supply in Remote Communities
提高偏远社区供水的 MCDI 弹性
- 批准号:
DP240101469 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects
Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
- 批准号:
IE230100103 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Early Career Industry Fellowships
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D
mPatch: a rapid test for improving diagnosis and triage of melanoma patients in primary care
mPatch:一种快速测试,用于改善初级保健中黑色素瘤患者的诊断和分诊
- 批准号:
MR/Y503381/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Multi-agent Self-improving of Large Language Models (LLMs)
大型语言模型 (LLM) 的多智能体自我改进
- 批准号:
2903811 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Studentship
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
- 批准号:
MR/X036235/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Fellowship