Mechanisms of Transient Growth and Turbulence Evolution in a Columnar Vortex

柱状涡中的瞬态增长和湍流演化机制

基本信息

  • 批准号:
    0554165
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

PROPOSAL NO.: CTS-0554165PRINCIPAL INVESTIGATOR: F. HUSSAININSTITUTION: UNIVERSITY OF HOUSTONMECHANISMS OF TRANSIENT GROWTH AND TURBULENCE EVOLUTION IN A COLUMNAR VORTEX This project will focus on the fundamental problem of large-scale/fine scale vorticity coupling through direct numerical simulations (DNS) of ambient turbulence interacting with a single, large-scale coherent vortex - idealized as an isolated columnar vortex. Turbulent flows featuring large-scale vortices (coherent structures, CS) are commonly encountered in engineering applications, e.g. turbines, trailing vortices, jets, wakes and boundary layers. While CS are now well recognized to be responsible for important engineering effects - such as drag, mixing, heat transfer, combustion, and flow noise - turbulence, in turn, strongly affects the evolution of the CS itself by inducing large-amplitude waves in the vortex core, triggering new instabilities in the ambient flow, and enhancing CS decay. The modeling and prediction of CS evolution - involving the intricate coupling between large- and fine-scale turbulence - remains a formidable challenge. A central aspect of the proposed approach is the application of novel spectral DNS techniques that correctly address the proper flow domain boundary conditions. It has been shown that intense, azimuthally-oriented secondary, finer-scale filaments that such vortex breeds can induce large-amplitude waves on the core of the vortex column itself. Transient growth analysis can provide a systematic way to identify specific 'optimal' modes most conducive to vortex instability and transition. Such modes - to be pursued through DNS - can cause 'bypass' transition and sustained turbulence. The failure of existing turbulence models to capture these effects appears to underlie the large discrepancies in predicted and observed vortex decay rates - a quantity of fundamental practical relevance in applications such as the aircraft trailing vortices. This research will have broad educational, scientific, technological, and, ultimately, very significant economic impact. This fundamental problem of vortex/turbulence coupling is relevant to a wide spectrum of applications: ranging from the alleviation of the aircraft wake hazard to the improved design of gas turbines to reducing vehicle/aircraft drag. Significant fuel savings will also result via control of transient growth in trailing vortices and boundary layers. The findings from this research will help minimize spacing of aircraft takeoffs in busy airports, enhancing airport utilization and obviating the need for expensive new runways. Graduate and undergraduate students, in collaboration with NASA/JSC engineers, will work with high-school science teachers and students to give them hands on research experience and to popularize engineering in Houston schools and science fairs via the use of the aircraft wake problem and findings from this research program.
提案编号:CTS-0554165主要制造商:F.侯赛因机构:休斯顿大学圆柱涡中瞬态增长和湍流演化的机制本项目将通过环境湍流与单个大尺度相干涡(理想化为孤立的圆柱涡)相互作用的直接数值模拟(DNS),重点研究大尺度/细尺度涡度耦合的基本问题。具有大尺度涡(相干结构,CS)的湍流在工程应用中经常遇到,例如涡轮机、尾涡、射流、尾流和边界层。虽然CS现在被公认为是重要的工程效应的原因-如阻力,混合,传热,燃烧和流动噪声-湍流,反过来,强烈影响CS本身的演变,诱导大振幅波的涡核,引发新的不稳定性的环境流,并加强CS衰减。CS演化的建模和预测-涉及大尺度和细尺度湍流之间的复杂耦合-仍然是一个艰巨的挑战。 所提出的方法的一个中心方面是新的频谱DNS技术,正确地解决适当的流域边界条件的应用。它已被证明,强烈的,方位角定向的二次,更精细的尺度丝,这样的涡滋生可以诱导大振幅波的涡柱本身的核心。 瞬态增长分析可以提供一个系统的方法来确定特定的最佳模式最有利于涡的不稳定性和过渡。这种模式-通过DNS进行-可以导致“旁路”过渡和持续的湍流。现有的湍流模型未能捕捉到这些效应,这似乎是预测的和观察到的涡流衰减率之间存在巨大差异的原因--这在诸如飞机尾涡等应用中具有重要的实际意义。 这项研究将产生广泛的教育、科学和技术影响,并最终产生非常重大的经济影响。涡流/紊流耦合的这一基本问题与广泛的应用有关:从减轻飞机尾流危害到改进燃气涡轮机的设计,再到减少车辆/飞机阻力。通过控制尾涡和边界层的瞬态增长,也将显著节省燃料。 这项研究的结果将有助于最大限度地减少忙碌机场的飞机起飞间隔,提高机场的利用率,并避免昂贵的新跑道的需要。研究生和本科生将与NASA/JSC工程师合作,与高中科学教师和学生一起工作,通过使用飞机尾流问题和该研究计划的结果,为他们提供研究经验,并在休斯顿学校和科学博览会上推广工程学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fazle Hussain其他文献

Topological transition and helicity conversion of vortex knots and links
涡结和涡环的拓扑转变和螺旋度转换
  • DOI:
    10.1017/jfm.2022.464
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiyu Shen;Jie Yao;Fazle Hussain;Yue Yang
  • 通讯作者:
    Yue Yang
A predictive model for Covid-19 spread applied to six US states
适用于美国六个州的 Covid-19 传播预测模型
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. S. Khan;F. V. Bussel;Fazle Hussain
  • 通讯作者:
    Fazle Hussain
Vortex dynamics of turbulence–coherent structure interaction
湍流-相干结构相互作用的涡动力学
Incorporating boundary constraints to predict mean velocities in turbulent channel flow
New scaling for compressible wall turbulence
可压缩壁湍流的新缩放

Fazle Hussain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fazle Hussain', 18)}}的其他基金

Direct Numerical Simulation and Analysis of Turbulent Pipe Flow at High Reynolds Numbers
高雷诺数湍流管流的直接数值模拟与分析
  • 批准号:
    2031650
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Study of Vortex Reconnection by means of Holographic particle Velocimetry
全息粒子测速法研究涡旋重联
  • 批准号:
    9904328
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Dynamics of Compressible Vortex Rings and Circular Jets
可压缩涡环和圆形射流的动力学
  • 批准号:
    9622302
  • 财政年份:
    1996
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Acquisition of Advanced Instrumentation for Research in Turbulence, Chaos, Combustion and two-Phase Flows
购置先进仪器用于湍流、混沌、燃烧和两相流研究
  • 批准号:
    9413798
  • 财政年份:
    1994
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Engineering Research Equipment: High-Performancs Data Acquisition and Control System for Dynamical and Coherent Structures Approaches to Turbulence
工程研究设备:用于动力和相干结构湍流方法的高性能数据采集和控制系统
  • 批准号:
    9411569
  • 财政年份:
    1994
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Compressible Vortex Dynamics and Turbulence: Reconnection, Core Dynamics, and Fine-Scale Organization
可压缩涡动力学和湍流:重联、核心动力学和精细尺度组织
  • 批准号:
    9214818
  • 财政年份:
    1992
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Small Grants for Exploratory Research: Separation of Binary Mixture
用于探索性研究的小额资助:二元混合物的分离
  • 批准号:
    9122746
  • 财政年份:
    1991
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
US-Japan Cooperative Research: Vortex Dynamics and Organized Structures in Turbulent Shear Flows
美日合作研究:湍流剪切流中的涡动力学和组织结构
  • 批准号:
    8914918
  • 财政年份:
    1990
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Studies of Vortical Structures and Their Interactions: U.S.-Japan Cooperative Research
涡结构及其相互作用的研究:美日合作研究
  • 批准号:
    8414714
  • 财政年份:
    1985
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Some Basic Investigations in Turbulent Shear Flows
湍流剪切流的一些基础研究
  • 批准号:
    8111676
  • 财政年份:
    1981
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
  • 批准号:
    30801141
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Transient growth study of quasi-coherent structure of non-equilibrium turbulence for sophisticated flow control
用于复杂流动控制的非平衡湍流准相干结构的瞬态增长研究
  • 批准号:
    15K21677
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Metastable indium oxyhydroxide (InOOH) and corundum-type indium oxide (In2O3): controllable synthesis, growth of single crystals and in-situ characterization of transformation paths and transient intermediates
亚稳态羟基氧化铟(InOOH)和刚玉型氧化铟(In2O3):可控合成、单晶生长以及转化路径和瞬态中间体的原位表征
  • 批准号:
    233521218
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Priority Programmes
Collaborative Research: IDR-Model-based Feedback Control of Transient Growth in a Laminar Boundary Layer: Bridging the Gap between CFD and Experiments
合作研究:基于 IDR 模型的层流边界层瞬态生长反馈控制:弥合 CFD 与实验之间的差距
  • 批准号:
    0932928
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: IDR-Model-based Feedback Control of Transient Growth in a Laminar Boundary Layer: Bridging the Gap between CFD and Experiments
合作研究:基于 IDR 模型的层流边界层瞬态生长反馈控制:弥合 CFD 与实验之间的差距
  • 批准号:
    0932546
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Nerve Growth Factor and Transient Receptor Potential (TRPV1) Channel in Diabetic
糖尿病患者的神经生长因子和瞬时受体电位 (TRPV1) 通道
  • 批准号:
    7457520
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
Effects of erythropoietin and insulin-like growth factor 1 on the outcome after transient spinal cord ischemia and the mechanism in the signal transduction
促红细胞生成素和胰岛素样生长因子1对短暂性脊髓缺血后转归的影响及信号转导机制
  • 批准号:
    19591797
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modeling Solution Crystal Growth Processes: Toward Three- Dimensional, Transient Simulations on Massively Parallel Supercomputers
晶体生长过程建模解决方案:在大规模并行超级计算机上进行三维瞬态模拟
  • 批准号:
    9218842
  • 财政年份:
    1993
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Chain Growth and Selectivity for Carbon Monoxide/Hydrogen Reactions Studied by Transient Methods
通过瞬态方法研究一氧化碳/氢气反应的链增长和选择性
  • 批准号:
    8517158
  • 财政年份:
    1986
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Theory of Creep Crack Growth: Transient Effects (Materials Research)
蠕变裂纹扩展理论:瞬态效应(材料研究)
  • 批准号:
    8406556
  • 财政年份:
    1984
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing grant
Combination of in situ functionalization and transient ultrashort-time spectroscopy for the mechanistic elucidation of laser fragmentation mechanisms and the associated growth kinetics of colloidal gold nanoparticles (Ultra frag)
原位功能化和瞬态超短时光谱相结合,用于阐明激光碎裂机制和胶体金纳米粒子(超碎片)的相关生长动力学
  • 批准号:
    491072288
  • 财政年份:
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了