Collaborative Research: Arithmetic and Equidistribution on Homogeneous Spaces
合作研究:齐次空间上的算术和均匀分布
基本信息
- 批准号:0554373
- 负责人:
- 金额:$ 37.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, it has become clear that many interesting problems,in particular problems in arithmetic, quantum chaos and the theory ofL-functions, may be profitably reduced to questions concerningequidistribution of points or measures on homogeneous spaces. Thesequestions regarding equidistribution can be approached from manyangles. Two theories which have proved to be particularly well-suitedto study such questions are the spectral theory of automorphic forms,which is closely related to the theory of L-functions, and the theoryof dynamical systems, particularly the study of unipotent and moregeneral flows on these homogeneous spaces. Recently there has beenconsiderable progress involving tools such as special value formulaefor L-functions, and (partial) classification results for measuresinvariant under higher rank torus actions. Particularly exciting isthe possibility, already realized in some instances, of combiningthese techniques. The purpose of the proposed FRG is to investigatefurther this circle of ideas, which we believe has the potential toimpact many other problems related to the above. The result of theseinvestigations will be a deeper understanding of the dynamics of groupactions on homogeneous spaces, of the analytic theory of automorphicforms, and the (sometimes unexpected) applications to problems ofarithmetic nature.The present project is concerned with a surprising link between twoclassical fields of mathematics of quite disparate origin: numbertheory and dynamics. The study of number theory began thousands ofyears ago, motivated, in significant part, by questions about primenumbers. On the other hand, ergodic theory and dynamics aremathematical fields of more recent provenance, which arose fromstudying the long-term evolution of complicated deterministicprocesses -- such as planetary motion. It is a striking fact (whichhas only recently begun to be heavily exploited) that, in certaincontexts, ideas from ergodic theory interact very deeply with classicalproblems in number theory. This project will enhance ourunderstanding of this inter-relation and how we can combine knowledgefrom both of these fruitful disciplines effectively.
近年来,人们已经清楚地认识到,许多有趣的问题,特别是算术、量子混沌和L-函数理论中的问题,可以有利地归结为关于齐次空间上的点或测度的均匀分布的问题。关于均布的等式可以从多个角度探讨。两个理论已被证明是特别适合研究这样的问题是谱理论的自守形式,这是密切相关的理论的L-功能,和theoryof动力系统,特别是研究的unipotent和更一般的流动这些齐次空间。最近有相当大的进展,涉及的工具,如特殊的值formulaefor L-函数,和(部分)分类结果的测度不变下的高秩环面行动。特别令人兴奋的是,在某些情况下已经实现了将这些技术结合起来的可能性。拟议的联邦德国的目的是进一步调查这一圈的想法,我们相信有可能影响许多其他问题与上述有关。这些研究的结果将是对齐次空间上群作用的动力学、自同构形式的分析理论以及对算术性质问题的应用(有时是意想不到的)有更深的理解。本项目关注的是两个起源完全不同的经典数学领域之间令人惊讶的联系:数论和动力学。对数论的研究始于几千年前,很大程度上是出于对素数的疑问。 另一方面,遍历理论和动力学是最近起源的数学领域,它们起源于研究复杂的确定性过程的长期演化--比如行星运动。这是一个惊人的事实(直到最近才开始被大量利用),在某些情况下,遍历理论的思想与数论中的经典问题相互作用非常深刻。 这个项目将加强我们对这种相互关系的理解,以及我们如何有效地将这两个富有成果的学科的知识联合收割机结合起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenzhi Luo其他文献
Toward Rational Understandings of α-C–H Functionalization: Energetic Studies of Representative Tertiary Amines
理性理解α-C-H功能化:代表性叔胺的能量研究
- DOI:
10.1016/j.isci.2020.100851 - 发表时间:
2020-01 - 期刊:
- 影响因子:5.8
- 作者:
Wenzhi Luo;Jin-Dong Yang;Jin-Pei Cheng - 通讯作者:
Jin-Pei Cheng
The spectral mean value for linear forms in twisted coefficients of cusp forms
尖点形式扭曲系数中线性形式的谱平均值
- DOI:
10.4064/aa-70-4-377-391 - 发表时间:
1995 - 期刊:
- 影响因子:0.7
- 作者:
Wenzhi Luo - 通讯作者:
Wenzhi Luo
Nonvanishing of $L$-values and the Weyl law
- DOI:
10.2307/3062104 - 发表时间:
2001-09 - 期刊:
- 影响因子:4.9
- 作者:
Wenzhi Luo - 通讯作者:
Wenzhi Luo
PO-02-001 strongMODIFIED BOX ABLATION WITH OR WITHOUT DRIVERS ABLATION FOR CHINESE PATIENTS WITH NON-PAROXYSMAL ATRIAL FIBRILLATION: A RETROSPECTIVE REAL-WORLD STUDY/strong
PO-02-001 非阵发性心房颤动中国患者行有或无驱动子消融的强修饰箱式消融术:一项回顾性真实世界研究
- DOI:
10.1016/j.hrthm.2023.03.761 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Weiwu Xiong;Wenzhi Luo;Chunliang Ji;Lu Xingwei;Yun Chen;Sisi Lin;Zhi-hui Zhang - 通讯作者:
Zhi-hui Zhang
Quantum ergodicity of Eigenfunctions on PSL2(Z)/H2
PSL2(Z)/H2 上本征函数的量子遍历性
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Wenzhi Luo;P. Sarnak - 通讯作者:
P. Sarnak
Wenzhi Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenzhi Luo', 18)}}的其他基金
Analytic Aspects of L-functions and Related Problems
L 函数的解析方面及相关问题
- 批准号:
1160647 - 财政年份:2012
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Equidistribution of Hecke Eigenforms and Related Problems
Hecke本征型的均匀分布及相关问题
- 批准号:
0855600 - 财政年份:2009
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Analytic aspects of L-functions and their applications
L-函数的解析方面及其应用
- 批准号:
0245258 - 财政年份:2003
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
Sum of Kloosterman Sums, Singular Exponential Sums and Their Applications
Kloosterman 和、奇异指数和及其应用
- 批准号:
9988503 - 财政年份:2000
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104348 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104420 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Collaborative Research: Midwest Arithmetic Geometry and Number Theory Series
合作研究:中西部算术几何与数论系列
- 批准号:
2005736 - 财政年份:2020
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
Collaborative Research: Midwest Arithmetic Geometry and Number Theory Series
合作研究:中西部算术几何与数论系列
- 批准号:
2006070 - 财政年份:2020
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Collaborative Research: Midwest Arithmetic Geometry and Number Theory Series
合作研究:中西部算术几何与数论系列
- 批准号:
2005847 - 财政年份:2020
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Arithmetic Geometry Methods in Complexity and Communication
AF:媒介:协作研究:复杂性和通信中的算术几何方法
- 批准号:
1900929 - 财政年份:2019
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Arithmetic Geometry Methods in Complexity and Communication
AF:媒介:协作研究:复杂性和通信中的算术几何方法
- 批准号:
1900820 - 财政年份:2019
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Arithmetic Geometry Methods in Complexity and Communication
AF:媒介:协作研究:复杂性和通信中的算术几何方法
- 批准号:
1900881 - 财政年份:2019
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
SHF:Small: Collaborative Research: Rectification of Arithmetic Circuits with Craig Interpolants in Algebraic Geometry
SHF:Small:合作研究:用代数几何中的 Craig 插值修正算术电路
- 批准号:
1910368 - 财政年份:2019
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces
FRG:协作研究:K3 曲面上有理曲线的算术和几何
- 批准号:
0968318 - 财政年份:2010
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant