Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory

合作研究:代数K理论、算术和等变稳定同伦理论

基本信息

  • 批准号:
    2104420
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Algebraic topology began as the study of those algebraic invariants of geometric objects that are preserved under certain smooth deformations. Gradually, it was realized that the algebraic invariants, called cohomology theories, could themselves be represented by geometric objects known as spectra. A central triumph of modern homotopy theory has been the construction of categories of ring spectra that are suitable for performing constructions analogous to those of classical algebra. This has proved fruitful by providing invariants, which shed new light on old questions. In addition, it has raised new questions that have unexpected connections to other areas of mathematics and physics. This project works in the setting of an invariant called algebraic K-theory and related theories. The project studies applications of these theories to a broad range of questions in number theory, algebraic geometry, and geometric topology, as well as algebraic topology itself. The award provides support for students who will be engaged in parts of this research.This grant funds a broad research program aimed at applying recent work of the PIs on algebraic K-theory, trace methods, and equivariant stable homotopy theory to study a wide variety of problems in homotopy theory. Prior work of the PIs studied the algebraic K-theory of the sphere spectrum and the fiber of the cyclotomic trace for algebraic number rings. The current project expands the investigation to the fiber of the cyclotomic trace on more general rings over algebraic p-integers in terms of Tate-Poitou duality and a related K-theory question more generally for other kinds of Artin duality. The project explores a connection between the geometric Soule embedding and the Kummer-Vandiver conjecture discovered in the PIs' prior work. The PIs' prior work also gives a splitting that is consistent with and gives evidence for the existence of p-adically interpolated Adams operations on the algebraic K-theory at least in the context of regular rings. The project investigates specific conjectures and approaches to this problem. The project advances a new approach to the the Hatcher-Waldhausen map that would have implications in geometric, differential, and symplectic topology. The project proposes a construction of multiplicative norm maps in equivariant stable homotopy theory for positive dimensional compact Lie groups. This requires a new foundation for non-equivariant factorization homology and holds the promise of constructing a genuine equivariant factorization homology theory for positive dimensional compact Lie groups. The project includes a collaboration of the PIs with Basterra, Hill, and Lawson to study equivariant TAQ as part of a broader program to develop the foundations for equivariant derived algebraic geometry. If successful, this program will provide an organizing principle for phenomenological data coming from work on topological modular forms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数拓扑学最初是研究几何物体在一定光滑变形下保持不变的代数不变量。逐渐地,人们认识到称为上同调理论的代数不变量本身可以用称为谱的几何对象来表示。现代同伦理论的一个中心胜利是构造了适合于执行类似于经典代数的构造的环谱范畴。事实证明,这是富有成效的,因为它提供了不变量,为老问题提供了新的思路。此外,它还提出了一些新的问题,这些问题与数学和物理的其他领域有着意想不到的联系。这个项目是在不变量代数k理论和相关理论的背景下进行的。该项目研究这些理论在数论、代数几何、几何拓扑以及代数拓扑本身的广泛问题中的应用。该奖项为将参与本研究的部分学生提供支持。该基金资助了一个广泛的研究项目,旨在应用pi在代数k理论,迹方法和等变稳定同伦理论方面的最新工作来研究同伦理论中的各种问题。前人研究了代数数环的球谱的代数k理论和环切迹的纤维。目前的项目将研究扩展到更一般的p-整数代数环上的环切迹纤维,在Tate-Poitou对偶和其他类型的Artin对偶的相关k理论问题上。该项目探索几何灵魂嵌入与PIs先前工作中发现的Kummer-Vandiver猜想之间的联系。pi先前的工作也给出了一个分裂,它至少在正则环的背景下,与代数k理论上的p-根内插Adams运算相一致,并为其存在提供了证据。该项目调查了解决这个问题的具体猜测和方法。该项目提出了一种新的方法来研究Hatcher-Waldhausen图,这将对几何、微分和辛拓扑产生影响。在正维紧李群的等变稳定同伦理论中,给出了一个乘法范数映射的构造。这为非等变分解同调提供了新的基础,并为构造正维紧李群的真正等变分解同调理论提供了希望。该项目包括pi与Basterra、Hill和Lawson的合作,以研究等变TAQ,作为开发等变衍生代数几何基础的更广泛计划的一部分。如果成功,该计划将为来自拓扑模块形式工作的现象学数据提供组织原则。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Blumberg其他文献

Andrew Blumberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Blumberg', 18)}}的其他基金

FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
  • 批准号:
    2052970
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Algebraic K-Theory, Topological Periodic Cyclic Homology, and Noncommutative Algebraic Geometry
合作研究:代数K理论、拓扑周期循​​环同调和非交换代数几何
  • 批准号:
    1812064
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research : Floer homotopy theory
FRG:合作研究:弗洛尔同伦理论
  • 批准号:
    1564289
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Algebraic K-theory, trace methods, and non-commutative geometry
职业:代数 K 理论、迹方法和非交换几何
  • 批准号:
    1151577
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Algebraic invariants of structured ring spectra, arithmetic, and geometry
结构化环谱、算术和几何的代数不变量
  • 批准号:
    0906105
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
  • 批准号:
    0503146
  • 财政年份:
    2005
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
  • 批准号:
    2329854
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
  • 批准号:
    2302174
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
  • 批准号:
    2302173
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
  • 批准号:
    2329855
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
  • 批准号:
    2152235
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
  • 批准号:
    2229915
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
  • 批准号:
    2151946
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
  • 批准号:
    2152088
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
  • 批准号:
    2152311
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Algebraic Framework of Compositional Functions for New Structure, Training, and Explainability of Deep Learning
合作研究:深度学习新结构、训练和可解释性的组合函数代数框架
  • 批准号:
    2134235
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了