Enshrining Finite Simple Groups
铭记有限简单群
基本信息
- 批准号:0600854
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will work on problems in finite simple groups, lattices and vertex operator algebras (VOAs). Work on VOAs is joint with Chongying Dong. The main goal is to build moonshine-like VOAs for finite simple groups (as done for the monster in the mid 80s). Lattice constructions and analyses support this goal but recent work on lattices has a life of its own due to new techniques and applications. (1) The PI plans to strengthen recent joint work on uniqueness for the important moonshine VOA by reducing hypotheses. (2) The PI plans to give new constructions of sporadic groups and VOAs which enshrine them. This will involve revisions of existing moonshine VOA theories and adaptions to particular sporadic groups, and other work with the more classic lattice type VOAs. The result would be a new and uniform setting of most finite simple groups. (3) The PI's recent work on lattices has concentrated on spinoffs of the Barnes-Wall series. The PI will continue this study. The PI will build new series of lattices with series of finite groups as automorphism groups. Certain of these series and spinoffs will be used in part (2). Some of these lattices have relatively high minimum norms (and could be extremal), so the PI will try to settle those norms. Automorphism groups of some of these lattices will be determined. Uniqueness theories will be developed. (4) The PI plans to do more work on automorphism groups of low rank VOAs and on the connections between nonassociative algebras and VOAs. The PI hopes this proposal will help integrate sporadic groups into traditionally mainstream mathematics. Sporadic simple groups are finite simple groups which are not naturally part of the infinite series (classical groups, alternating groups). The program with lattices links certain infinite series of lattices involving classical groups over finite fields with those associated to sporadic groups. The program with VOA theory will link finite groups, general algebraic groups and infinite dimensional Lie theory. Lattices, VOAs and simple groups are connected to many parts of mathematics and mathematical physics.
PI将研究有限单群、格和顶点算子代数(VOAs)中的问题。VOAs的工作是与董崇英共同完成的。我们的主要目标是为有限的简单群体创造类似月光酒的voa(游戏邦注:就像80年代中期的怪物那样)。晶格结构和分析支持这一目标,但由于新的技术和应用,最近关于晶格的工作有了自己的生命。(1) PI计划通过减少假设来加强最近对重要的私酿之音的独特性的联合研究。(2) PI计划新建一些零星的团体和纪念他们的voa。这将涉及对现有的私酿之音理论的修订,并对特定的零星群体进行调整,以及对更经典的点阵型VOAs进行其他工作。结果将是大多数有限单群的一个新的统一的集合。PI最近对格子的研究主要集中在Barnes-Wall系列的衍生品上。PI将继续这项研究。PI将用有限群的序列作为自同构群来构建新的格序列。这些系列和衍生产品中的某些将在第(2)部分中使用。其中一些格具有相对较高的最小规范(并且可能是极端的),因此PI将尝试解决这些规范。其中一些格的自同构群将被确定。独特性理论将得到发展。(4) PI计划在低秩voa的自同构群以及非结合代数与voa之间的联系上做更多的工作。PI希望这一提议将有助于将零星的群体整合到传统的主流数学中。偶发单群是有限单群,不属于无限级数(经典群,交替群)。带格的程序将有限域上涉及经典群的无限格序列与零星群的无限格序列联系起来。该计划与VOA理论将连接有限群,一般代数群和无限维李论。晶格、voa和简单群与数学和数学物理的许多部分有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Griess其他文献
Robert Griess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Griess', 18)}}的其他基金
Mathematical Sciences: Finite Subgroups of Lie Groups and Automorphisms of Vertex Operator Algebras
数学科学:李群的有限子群和顶点算子代数的自同构
- 批准号:
9623038 - 财政年份:1996
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Sporadic Groups and Infinite Dimensional Groups
数学科学:零星群和无限维群
- 批准号:
9304279 - 财政年份:1993
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorial Group Theory and Sporadic Groups
数学科学:组合群论和零散群
- 批准号:
8600037 - 财政年份:1986
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Scientific Computing Research Equipment for the Mathematical Sciences
数学科学:数学科学的科学计算研究设备
- 批准号:
8504686 - 财政年份:1985
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Calculating the Essential p-Dimension of the Finite Simple Groups
计算有限单群的本质 p 维数
- 批准号:
2302822 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Fellowship Award
Classification of Finite Simple Groups. Groups of even type of medium size.
有限简单群的分类。
- 批准号:
EP/V05547X/1 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Fellowship
Subgroup Structure of certain Exceptional Finite Simple Groups
某些例外有限简单群的子群结构
- 批准号:
2617662 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Studentship
Combinatorial Structures associated with Classical Finite Simple Groups
与经典有限单群相关的组合结构
- 批准号:
2608958 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Studentship
Embeddings of Simple Groups in Exceptional Finite Simple Groups
简单群在异常有限简单群中的嵌入
- 批准号:
2616638 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Studentship
Combinatorial Structures associated with Exceptional Finite Simple Groups
与异常有限简单群相关的组合结构
- 批准号:
2596805 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Studentship
The Alperin-McKay conjecture for blocks of finite simple groups of Lie type
李型有限单群块的 Alperin-McKay 猜想
- 批准号:
433065539 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Research Grants
Resarch on simple groups with algebraic structures on which a finite simple group acts
有限单群作用于代数结构的单群研究
- 批准号:
16K05066 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the product decomposition conjecture for finite simple groups
关于有限单群的乘积分解猜想
- 批准号:
EP/N010957/1 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Research Grant
Finite simple groups of parabolic characteristic p
抛物线特征 p 的有限单群
- 批准号:
283297171 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Research Grants