From Local to Global Properties in Strongly Interacting Many-Body Systems
强相互作用多体系统中从局部属性到全局属性
基本信息
- 批准号:0603528
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:The Division of Materials Research and the Division of Mathematical Sciences contribute funding to this award under the NSF-wide Mathematical Sciences Priority Area and contributes to cyberinfrastructure through fundamental research that provides the foundations of future cyberinfrastructure. This award supports research and education on the theory of strongly interacting condensed matter many-body systems. The objective is to gain insight into the origin and behavior of topological phases. These phases are states of matter that are not the product of spontaneous symmetry breaking, and therefore do not have an order-parameter, but possess instead "quantum order" in which the ground state degeneracy is determined by the topology of the space in which they live.The project addresses a range of important and difficult problems in currently fertile and therefore very active, areas of fundamental physics. It should lead to progress both in physics and in mathematics. The principal goals of the proposed work are two-fold: firstly, to understand how the local properties of the many-body wave-functions conspire to produce the global ground-state degeneracy that characterizes these systems, and, secondly, to explore a possible strategy for addressing the last part of the quantum computing problem that of reconnecting the isolated quantum CPU to the classical world and reading of the answer to the computation.The method will be to use the quantum field theory of many-body systems in combination with the representation theory of infinite dimensional Lie algebras.Broader Impact: The topological phases being studied in this project may have applications to quantum computing. The numerical simulation of even simple quantum systems requires exponentially large storage space and exponentially long computation times. The quantum state of a collection of N spin- 1/2 particles, or qubits, requires 2N classical variables for its description, and solving the Schrdinger equation to follow its time evolution requires a conventional computer to perform up to 2N operations per time step. A computer built out of quantum components would be able to exploit the massive parallelism inherent in quantum time evolution to provide fast solutions for problems that would require exponential time on conventional machines. The difficulties to be overcome in building a quantum computer are many. The quantum system at its core must be strongly isolated from the environment so as to avoid decoherence; the unitary transformations that constitute the elementary computational steps must be performed with sufficient precision that error-correcting codes remain effective; and, after all the quantum computation has been performed, the system must be capable of being reconnected to the outside world in such a way that the output can be read off via a measurement process that does not disturb the result. The internal Hilbert space of the topological-phase ground states has many of the features desired of a quantum computer CPU, with the exception of ease of read-out. This project addresses this last problem, and also the origin of the internal Hilbert space itself.NON-TECHNICAL SUMMARY:The Division of Materials Research and the Division of Mathematical Sciences contribute funding to this award under the NSF-wide Mathematical Sciences Priority Area and contributes to cyberinfrastructure through fundamental research that provides the foundations of future cyberinfrastructure. This award supports research and education on the theory of strongly interacting condensed matter many-body systems. The research engages an important fundamental question: How are states of matter organized? This question is motivated in part by studies of quantum Hall systems and spin liquids that reveal states of matter that cannot be simply organized by symmetry and other principles that underlie the powerful standard theory that describes transformations among states of matter. These topological phases, as they are called, may underlie some of the most challenging problems at the frontiers of condensed matter physics, such as the nature of unusual states observed in high temperature superconductors and related materials, and how edge states that live at the boundaries of various complex quantum mechanical systems and control their properties at low temperature are organized. The PI will focus advanced quantum mechanical concepts of theoretical condensed matter physics and sophisticated mathematical methods that have not yet reached the mainstream of theoretical condensed matter physics on model systems to gain insight into these unusual states of matter and how they are organized. The manipulation of topological phases is a promising route to the realization of a robust implementation of a powerful new form of computation based on quantum mechanics. The PI will also engage a barrier to the realization of quantum computation, how to access in the macroscopic world information that is created by the operation of a quantum mechanical device. The research has potential impact on the field of mathematics and also on theoretical high energy physics.
材料研究部和数学科学部在NSF范围内的数学科学优先领域下为该奖项提供资金,并通过为未来网络基础设施提供基础的基础研究为网络基础设施做出贡献。该奖项支持强相互作用凝聚态多体系统理论的研究和教育。目的是深入了解拓扑相的起源和行为。这些相是物质的状态,不是自发对称破缺的产物,因此没有序参量,而是具有“量子序”,其中基态简并度由它们所处空间的拓扑结构决定。该项目解决了当前基础物理领域中一系列重要和困难的问题,因此非常活跃。它应该导致物理学和数学的进步。拟议工作的主要目标有两个:首先,理解多体波函数的局部性质如何共同产生表征这些系统的全局基态简并性,其次,探索解决量子计算问题的最后一部分的可能策略,即将孤立的量子CPU重新连接到经典世界,并阅读问题的答案。计算。该方法将使用量子场论的多体系统与无限维李代数的表示理论相结合。更广泛的影响:在这个项目中正在研究的拓扑相可能有应用到量子计算。即使是简单的量子系统的数值模拟也需要指数级大的存储空间和指数级长的计算时间。N个自旋为1/2的粒子或量子比特的集合的量子态需要2N个经典变量来描述,而求解薛定谔方程以跟踪其时间演化需要常规计算机在每个时间步执行多达2N个操作。由量子组件构建的计算机将能够利用量子时间演化中固有的大规模并行性,为传统机器上需要指数时间的问题提供快速解决方案。建造量子计算机需要克服的困难很多。量子系统的核心必须与环境强隔离,以避免退相干;构成基本计算步骤的幺正变换必须以足够的精度进行,以使纠错码保持有效;在所有的量子计算完成之后,该系统必须能够以这样的方式重新连接到外部世界,即可以通过不干扰结果的测量过程来读出输出。拓扑相位基态的内部希尔伯特空间具有量子计算机CPU所需的许多特征,除了易于读出之外。这个项目解决了最后一个问题,也是内部希尔伯特空间本身的起源。非技术性总结:材料研究部和数学科学部在NSF范围内的数学科学优先领域下为这个奖项提供资金,并通过基础研究为未来的网络基础设施提供基础,为网络基础设施做出贡献。该奖项支持强相互作用凝聚态多体系统理论的研究和教育。 这项研究涉及一个重要的基本问题:物质状态是如何组织的?这个问题的部分动机是对量子霍尔系统和自旋液体的研究,这些研究揭示了不能简单地由对称性和其他原理组织的物质状态,这些原理是描述物质状态之间转换的强大标准理论的基础。这些被称为拓扑相的现象可能是凝聚态物理学前沿最具挑战性的问题的基础,例如在高温超导体和相关材料中观察到的不寻常状态的性质,以及生活在各种复杂量子力学系统边界并在低温下控制其属性的边缘状态是如何组织的。PI将专注于理论凝聚态物理学的先进量子力学概念和尚未达到理论凝聚态物理学主流的复杂数学方法,以深入了解这些不寻常的物质状态以及它们是如何组织的。 拓扑相位的操纵是实现基于量子力学的强大新形式计算的鲁棒实现的一条有前途的路线。PI还将成为实现量子计算的障碍,即如何访问由量子力学设备操作所创建的宏观世界信息。该研究对数学领域和理论高能物理具有潜在的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Stone其他文献
Sintering Mechanism of Pt/Al2O3 in Complex Emission Gases Elucidated via In Situ Environmental STEM
通过原位环境 STEM 阐明 Pt/Al2O3 在复杂排放气体中的烧结机制
- DOI:
10.1021/acsmaterialslett.4c00422 - 发表时间:
2024 - 期刊:
- 影响因子:11.4
- 作者:
Jacob Smith;Gennaro Liccardo;Melissa C. Cendejas;Michael Stone;S. Mandal;F. Abild;M. Cargnello;Miaofang Chi - 通讯作者:
Miaofang Chi
Elementary derivation of one-dimensional fermion-number fractionalization.
一维费米子数分数化的初等推导。
- DOI:
10.1103/physrevb.31.6112 - 发表时间:
1985 - 期刊:
- 影响因子:0
- 作者:
Michael Stone - 通讯作者:
Michael Stone
2055769 Point-Of-Care Ultrasound Education at Harvard Medical School: a Pilot Study
- DOI:
10.1016/j.ultrasmedbio.2014.12.434 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Joshua Rempell;Fidencio Saldana;Navin Kumar;Donald DiSalvo;Trudy VanHouten;Cynthia McDermott;Evan Sanders;Michael Stone;Wilma Chan;Jennifer Luz;Vicki Noble;Andrew Liteplo;Heidi Kimberly;Minna Kohler - 通讯作者:
Minna Kohler
Septic Lung and Shock Lung in Man
男性败血性肺和休克肺
- DOI:
10.1097/00000658-197505000-00024 - 发表时间:
1975 - 期刊:
- 影响因子:9
- 作者:
G. H. Clowes;E. Hirsch;L. Williams;E. Kwasnik;T. O'Donnell;P. Cuevas;V. Saini;Iradj Moradi;M. Farizan;C. Saravis;Michael Stone;Julian Kuffler - 通讯作者:
Julian Kuffler
New approaches to the management of severe acute pancreatitis.
治疗重症急性胰腺炎的新方法。
- DOI:
- 发表时间:
1976 - 期刊:
- 影响因子:3
- 作者:
G. Blackburn;L. Williams;B. Bistrian;Michael Stone;E. Phillips;E. Hirsch;G. H. Clowes;J. Gregg - 通讯作者:
J. Gregg
Michael Stone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Stone', 18)}}的其他基金
Improved face-worn PPE designs for use by the public and professionals to reduce audio-visual communication difficulties
改进的面部佩戴个人防护装备设计,供公众和专业人士使用,以减少视听交流困难
- 批准号:
EP/V051571/1 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Geometric and Topological Phenomena in Condensed Matter Systems
凝聚态系统中的几何和拓扑现象
- 批准号:
1306011 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: Semiclassical Methods for the Study of Spin Systems
合作研究:自旋系统研究的半经典方法
- 批准号:
0855323 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Topology and Topological Phases in Strongly Interacting Many-Body Systems
强相互作用多体系统中的拓扑和拓扑相
- 批准号:
0903291 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Transforming Programmable Calculators into Personal Computers for Elementary School Students and Parents
将可编程计算器转变为小学生和家长的个人电脑
- 批准号:
9461868 - 财政年份:1995
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
- 批准号:
2100912 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Local and global biomechanical properties of the eye as new glaucoma risk factors
眼睛的局部和整体生物力学特性作为新的青光眼危险因素
- 批准号:
443021 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Operating Grants
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Study of interference of the radiative transfer induced by local and global structures of biological tissues and development of theoretical calculations of the light scattering properties
研究生物组织局部和整体结构引起的辐射传输的干扰以及光散射特性理论计算的发展
- 批准号:
18K13694 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global and Local Properties of Discrete Structures
离散结构的全局和局部属性
- 批准号:
1764123 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Effect of free-stream turbulence on global and local properties of turbulent boundary layers
自由流湍流对湍流边界层全局和局部特性的影响
- 批准号:
471230-2015 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Postdoctoral Fellowships