Topology and Topological Phases in Strongly Interacting Many-Body Systems

强相互作用多体系统中的拓扑和拓扑相

基本信息

  • 批准号:
    0903291
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThe Division of Materials Research and the Mathematical Sciences Division contribute funds to this award. It provides support for theoretical research and education on strongly interacting condensed matter many-body systems. The principal objective is to gain insight into the origin and behavior of topological phases. These phases are states of matter that are not the product of spontaneous symmetry breaking, and therefore do not have an order-parameter, but possess instead ?quantum order? in which the ground state degeneracy is determined by the topology of the space in which they live. Such topological phases have potential applications in quantum computing where the massive parallelism inherent in quantum time evolution provides fast solutions for problems that would require exponential time on conventional machines.The PI will further explore the correspondence between Calogero-Sutherland models and quantum Hall fluids with an aim to understanding the relation between edge and bulk states in non-abelian quantum fluids. The PI will explore new ideas for how to directly observe anionic statistics in the abelian quantum Hall effect through experiments. Research will also extend to the interplay of curvature and electronic structure in graphene. The specific aims of the research are three-fold: to understand how the local properties of the many-body wave-functions conspire to produce the global ground-state degeneracy that characterizes these systems, to explore possible applications of these systems for the construction of quantum computation devices, and to investigate novel systems that may, by design or by suitable engineering, possess the desired topological properties.Quantum field theory of many-body systems will be used to carry the research along with the representation theory of infinite dimensional current algebras, and index theorems that, under suitable circumstances, guarantee the existence of solutions of differential equations with desirable properties.This project contributes to the long-term goal of building a quantum computer, but also provides training of graduate students. These students will integrate research and education by acquiring valuable mathematical and computational skills, along with physical insight, that will prepare them for research careers in academia, industry, and the national laboratories.NON-TECHNICAL SUMMARYThe Division of Materials Research and the Mathematical Sciences Division contribute funds to this award. It provides support for theoretical research and education at the interface of condensed matter physics and mathematics. The PI will use advanced theoretical methods, and mathematical and physical concepts to explore the notion of a new kind of spontaneous organization that appears in quantum mechanical systems. Well known is the notion of ordered states like the spontaneous organization of atoms in a regular array to form perfect crystalline materials. The ordered crystal state has a lower symmetry than the melt from which the crystal grows. In quantum mechanical systems, a new kind of order is possible in which there is no change in symmetry upon going to the organized state. Rather, the organization is reflected more abstractly in the topological properties of the quantum mechanical wavefunction. This notion became apparent from the study of a gas of electrons confined to a plane in a perpendicular magnetic field. The PI will use advanced theoretical techniques and mathematical concepts to further study this idea and to determine if a new topological quantum state of matter appears and can be directly observed in experiments. The exciting possibility is that this state of matter can be manipulated to perform computational operations that are intrinsically parallel and can execute certain algorithms at much higher speed than existing and foreseeable supercomputers. This research contributes to the intellectual foundations of quantum computing and toward its experimental realization. This award also supports education. Students will integrate research and education by acquiring valuable mathematical and computational skills, along with physical insight, that will prepare them to join the workforce of the 21st century.
材料研究部和数学科学部为该奖项提供资金。它为强相互作用凝聚态多体系统的理论研究和教育提供了支持。主要目标是深入了解拓扑相的起源和行为。这些阶段是物质的状态,不是自发对称性破缺的产物,因此没有序参量,而是拥有?量子秩序其中基态简并度由它们所处空间的拓扑结构决定。这种拓扑相在量子计算中具有潜在的应用,量子时间演化中固有的大规模并行性为传统机器上需要指数时间的问题提供了快速解决方案。PI将进一步探索Calogero-Sutherland模型与量子Hall流体之间的对应关系,旨在理解非阿贝尔量子流体中边缘态和体态之间的关系。PI将通过实验探索如何直接观察阿贝尔量子霍尔效应中的阴离子统计的新思路。 研究还将扩展到石墨烯中曲率和电子结构的相互作用。 研究的具体目标有三个方面:了解多体波函数的局部性质如何共同产生表征这些系统的全局基态简并性,探索这些系统用于构建量子计算设备的可能应用,并研究新颖的系统,通过设计或适当的工程,具有所需的拓扑性质。多体系统的量子场论将被用来进行研究沿着无限维电流代数的表示理论,以及指数定理,在适当的情况下,保证微分方程的解的存在与理想的属性。该项目有助于建立量子计算机的长期目标,但也提供了研究生的培训。这些学生将通过获得有价值的数学和计算技能,沿着物理洞察力,将研究和教育结合起来,这将为他们在学术界,工业界和国家实验室的研究生涯做好准备。非技术摘要材料研究部和数学科学部为该奖项提供资金。它为凝聚态物理和数学的理论研究和教育提供了支持。PI将使用先进的理论方法,数学和物理概念来探索量子力学系统中出现的一种新型自发组织的概念。众所周知的是有序状态的概念,比如原子自发地组织成规则的阵列,形成完美的晶体材料。有序的晶体状态具有比晶体从中生长的熔体更低的对称性。在量子力学系统中,一种新的秩序是可能的,在这种秩序中,在进入有组织状态时,对称性没有变化。相反,这种组织更抽象地反映在量子力学波函数的拓扑性质中。这个概念在研究垂直磁场中被限制在一个平面内的电子气体时变得很明显。PI将使用先进的理论技术和数学概念来进一步研究这一想法,并确定是否出现了一种新的物质拓扑量子态,并且可以在实验中直接观察到。令人兴奋的可能性是,这种物质状态可以被操纵来执行本质上并行的计算操作,并且可以以比现有和可预见的超级计算机高得多的速度执行某些算法。这项研究有助于量子计算的知识基础及其实验实现。该奖项还支持教育。学生将通过获得有价值的数学和计算技能,沿着物理洞察力来整合研究和教育,这将为他们加入21世纪的劳动力队伍做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Stone其他文献

Sintering Mechanism of Pt/Al2O3 in Complex Emission Gases Elucidated via In Situ Environmental STEM
通过原位环境 STEM 阐明 Pt/Al2O3 在复杂排放气体中的烧结机制
  • DOI:
    10.1021/acsmaterialslett.4c00422
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Jacob Smith;Gennaro Liccardo;Melissa C. Cendejas;Michael Stone;S. Mandal;F. Abild;M. Cargnello;Miaofang Chi
  • 通讯作者:
    Miaofang Chi
Elementary derivation of one-dimensional fermion-number fractionalization.
一维费米子数分数化的初等推导。
2055769 Point-Of-Care Ultrasound Education at Harvard Medical School: a Pilot Study
  • DOI:
    10.1016/j.ultrasmedbio.2014.12.434
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joshua Rempell;Fidencio Saldana;Navin Kumar;Donald DiSalvo;Trudy VanHouten;Cynthia McDermott;Evan Sanders;Michael Stone;Wilma Chan;Jennifer Luz;Vicki Noble;Andrew Liteplo;Heidi Kimberly;Minna Kohler
  • 通讯作者:
    Minna Kohler
Septic Lung and Shock Lung in Man
男性败血性肺和休克肺
  • DOI:
    10.1097/00000658-197505000-00024
  • 发表时间:
    1975
  • 期刊:
  • 影响因子:
    9
  • 作者:
    G. H. Clowes;E. Hirsch;L. Williams;E. Kwasnik;T. O'Donnell;P. Cuevas;V. Saini;Iradj Moradi;M. Farizan;C. Saravis;Michael Stone;Julian Kuffler
  • 通讯作者:
    Julian Kuffler
New approaches to the management of severe acute pancreatitis.
治疗重症急性胰腺炎的新方法。
  • DOI:
  • 发表时间:
    1976
  • 期刊:
  • 影响因子:
    3
  • 作者:
    G. Blackburn;L. Williams;B. Bistrian;Michael Stone;E. Phillips;E. Hirsch;G. H. Clowes;J. Gregg
  • 通讯作者:
    J. Gregg

Michael Stone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Stone', 18)}}的其他基金

Improved face-worn PPE designs for use by the public and professionals to reduce audio-visual communication difficulties
改进的面部佩戴个人防护装备设计,供公众和专业人士使用,以减少视听交流困难
  • 批准号:
    EP/V051571/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Geometric and Topological Phenomena in Condensed Matter Systems
凝聚态系统中的几何和拓扑现象
  • 批准号:
    1306011
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative Research: Semiclassical Methods for the Study of Spin Systems
合作研究:自旋系统研究的半经典方法
  • 批准号:
    0855323
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
From Local to Global Properties in Strongly Interacting Many-Body Systems
强相互作用多体系统中从局部属性到全局属性
  • 批准号:
    0603528
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Transforming Programmable Calculators into Personal Computers for Elementary School Students and Parents
将可编程计算器转变为小学生和家长的个人电脑
  • 批准号:
    9461868
  • 财政年份:
    1995
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Designing topological superconductivity and correlated phases in Van der Waals materials
职业:设计范德华材料中的拓扑超导性和相关相
  • 批准号:
    2238748
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Control of topological phases and development of high-efficiency spin current sources using topological surface states
利用拓扑表面态控制拓扑相并开发高效自旋电流源
  • 批准号:
    23K04576
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Braided tensor categories, higher Picard groups, and classification of topological phases of matter
辫状张量类别、高皮卡德群以及物质拓扑相的分类
  • 批准号:
    2302267
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Dynamical topological phases in monitored quantum circuits
受监控量子电路中的动态拓扑相
  • 批准号:
    2892177
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Search for novel topological quantum phases and elucidation of their electronic structures using multiple degrees of freedom in heavy electron systems
在重电子系统中使用多自由度寻找新颖的拓扑量子相并阐明其电子结构
  • 批准号:
    23H01132
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Hidden Topological Polar Phases Created by Ultrafast Acoustic Excitation
职业:超快声激励产生的隐藏拓扑极性相位
  • 批准号:
    2237884
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Electrical Control of Topological Phases in Layered Semimetals
职业:层状半金属拓扑相的电控制
  • 批准号:
    2238254
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
LEAPS-MPS: Tailoring Magnetic Topological Phases in Rare-earth based Kagome Materials
LEAPS-MPS:在稀土基 Kagome 材料中定制磁拓扑相
  • 批准号:
    2213412
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Topological phases by momentum space braiding
动量空间编织的拓扑相
  • 批准号:
    EP/W00187X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
  • 批准号:
    2154389
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了