Conformal Invariance and Restriction in Multiply Connected Domains and Riemann Surfaces

多重连通域和黎曼曲面中的共形不变性和限制

基本信息

  • 批准号:
    0604216
  • 负责人:
  • 金额:
    $ 11.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

The P.I.'s research programme is to study conformally invariant measures first in multiply connected domains and then on Riemann surfaces. In particular: Identify diffusions on an appropriate moduli space that give rise to conformally invariant measures on curves satisfying the restriction property; Measuring the restriction defect for other diffusions, and calculating or characterize intersection probabilities as functions of the moduli; Link the measure and its change under perturbations of the conformal structure to highest weight representations; Study conformally invariant quantities for domino tilings and the Gaussian free field in multiply connected domains. Self-avoiding planar curves arise in many natural contexts. For example, if a very shallow plate is filled with water and oil, we can consider the curve (or curves) separating the two liquids. Another example are coastlines, the borders of countries on maps, or rivers seen from an airplane. Typically, these curves are very irregular. But what exactly is ``typical,'' and how can the irregularity be quantified? Since all coastlines are different, it does not make sense to look for one self-avoiding curve as the mathematical model of a coastline. On the other hand, it does make sense to look for a probability distribution on the set of all self-avoiding curves ( the ``possible'' coastlines) so that if we sample from the set of these curves according to this distribution, then the statistics are in agreement with statistics of real coastlines. The P.I. proposes to study these probability distributions in the case when the geometry is complicated by holes (think of pebbles in the shallow plate with water and oil) or the curves are situated on a curved surface such as a sphere (the globe), a donut, or a pretzel.
P.I.S的研究计划是首先在多连通区域上研究共形不变测度,然后在黎曼曲面上研究共形不变测度。特别是:在适当的模空间上识别出在满足约束性质的曲线上产生共形不变测度的扩散;测量其他扩散的约束缺陷,并计算或刻画作为模的函数的相交概率;将该测度及其在共形结构扰动下的变化与最高权表示联系起来;研究多米诺骨牌平铺和多重连通区域中的高斯自由场的共形不变量。自回避平面曲线在许多自然环境中都会出现。例如,如果一个很浅的盘子里装满了水和油,我们可以考虑分开这两种液体的曲线。另一个例子是海岸线,地图上的国家边界,或者从飞机上看到的河流。通常,这些曲线是非常不规则的。但“典型”到底是什么?这种不规则性如何量化?由于所有的海岸线都是不同的,所以寻找一条自回避曲线作为海岸线的数学模型是没有意义的。另一方面,在所有自我回避曲线(“可能”的海岸线)的集合上寻找概率分布是有意义的,这样,如果我们根据该分布从这些曲线集合中进行抽样,则统计数据与真实海岸线的统计数据是一致的。P.I.建议在几何形状复杂的情况下研究这些概率分布(想想有水和油的浅盘中的鹅卵石),或者曲线位于球体(球体)、甜甜圈或椒盐卷饼等曲面上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Bauer其他文献

A multicentre, international, observational study on transarterial chemoembolisation in colorectal cancer liver metastases: Design and rationale of CIREL
  • DOI:
    10.1016/j.dld.2020.05.051
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Philippe L. Pereira;Dirk Arnold;Thierry de Baère;Fernando Gomez;Thomas Helmberger;Roberto Iezzi;Geert Maleux;Hans Prenen;Bruno Sangro;Anders Nordlund;Bleranda Zeka;Robert Bauer;Nathalie Kaufmann;Olivier Pellerin;Julien Taieb
  • 通讯作者:
    Julien Taieb
Biochemical Characterization of Recombinant Fusions of Lipopolysaccharide Binding Protein and Bactericidal/Permeability-increasing Protein: IMPLICATIONS IN BIOLOGICAL ACTIVITY
  • DOI:
    10.1074/jbc.272.4.2149
  • 发表时间:
    1997-01-24
  • 期刊:
  • 影响因子:
  • 作者:
    Susan L. Abrahamson;Hsiu-Mei Wu;Robert E. Williams;Ken Der;Nneka Ottah;Roger Little;Helene Gazzano-Santoro;Georgia Theofan;Robert Bauer;Scott Leigh;Anne Orme;Arnold H. Horwitz;Stephen F. Carroll;Russell L. Dedrick
  • 通讯作者:
    Russell L. Dedrick
57 - Efficacy and Safety of Oral Semaglutide by Baseline Age in the PIONEER Clinical Trial Program
  • DOI:
    10.1016/j.jcjd.2020.08.063
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sue Pedersen;Vanita R. Aroda;Robert Bauer;Christin Løth Hertz;Eduard Montanya;Mark L. Warren;Bertrand Cariou
  • 通讯作者:
    Bertrand Cariou
56 - Effect of Oral Semaglutide With or Without Background SGLT2i in Patients With T2D: Subgroup Analysis of PIONEER 4
  • DOI:
    10.1016/j.jcjd.2020.08.062
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ronald M. Goldenberg;Richard E. Pratley;Robert Bauer;Kamlesh Khunti;Eskil Kreiner;Peter Nørkjær Laursen;Juris J. Meier
  • 通讯作者:
    Juris J. Meier
Laparoscopic Removal of a Dislocated Screw of a Hip Joint Endoprosthesis during Oncologic Surgery
  • DOI:
    10.1016/j.jmig.2018.08.021
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christina Halder;Tanja Hauzenberger;Anton Scharl;Robert Bauer;Thomas Papathemelis
  • 通讯作者:
    Thomas Papathemelis

Robert Bauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Bauer', 18)}}的其他基金

An Integrated Field Hydrology, Geochemistry, and Geophysics Module for Geoscience Field Camps
适用于地球科学野外营的综合野外水文学、地球化学和地球物理学模块
  • 批准号:
    0410493
  • 财政年份:
    2004
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9705990
  • 财政年份:
    1997
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Fellowship Award
COLLABORATIVE RESEARCH: Middle-Crustal Deformation and Metamorphism of an Archean Continental Margin During Early Proterozoic Orogenesis
合作研究:早元古代造山作用期间太古代大陆边缘的中地壳变形和变质作用
  • 批准号:
    9706445
  • 财政年份:
    1997
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Standard Grant
Analysis of Proterozoic Deformation in Archean Rocks North of the Cheyenne Belt in the Central Laramie Range, SE Wyoming
怀俄明州东南部拉勒米山脉中部夏安带以北太古代岩石的元古代变形分析
  • 批准号:
    9305507
  • 财政年份:
    1993
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Standard Grant
An Integrated Study of Deformation, Metamorphism, and Geo- chronology in the Archean Rocks Along the Northern Margin ofthe Quetico Subprovince in NE Minnesota and Adjacent Canada
明尼苏达州东北部和邻近加拿大奎蒂科副省北缘太古宙岩石变形、变质作用和年代学的综合研究
  • 批准号:
    9005039
  • 财政年份:
    1990
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Standard Grant
A Structural Metamorphic Transect of the Vermilion Granitic Complex, NE Minnesota: Collaborative Research
明尼苏达州东北部朱红色花岗岩杂岩的结构变质横断面:合作研究
  • 批准号:
    8609508
  • 财政年份:
    1986
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Standard Grant
Structural Analysis of an Archean Greenstone/Granite TerraneIn Northern Minnesota
明尼苏达州北部太古代绿岩/花岗岩地体的结构分析
  • 批准号:
    8217774
  • 财政年份:
    1983
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Standard Grant

相似海外基金

Scale invariance: A new paradigm for particle physics and cosmology
尺度不变性:粒子物理学和宇宙学的新范式
  • 批准号:
    DP220101721
  • 财政年份:
    2023
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Projects
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
  • 批准号:
    DP230101629
  • 财政年份:
    2023
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Projects
EAR-PF: Are large earthquakes like small earthquakes? Using synthetic earthquakes to resolve discrepancies in observations of earthquake stress drop magnitude-invariance
EAR-PF:大地震和小地震一样吗?
  • 批准号:
    2204102
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Fellowship Award
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
  • 批准号:
    2213335
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Standard Grant
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
  • 批准号:
    RGPIN-2020-07120
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
  • 批准号:
    RGPIN-2018-04122
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2021
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
  • 批准号:
    RGPIN-2018-04122
  • 财政年份:
    2021
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
  • 批准号:
    RGPIN-2020-07120
  • 财政年份:
    2021
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了