Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
基本信息
- 批准号:RGPIN-2020-07120
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
GENERAL SCOPE The proposal lies within the broad scope of definable equivalence relations on Polish spaces, which is a modern focus of descriptive set theory. This theory provides a general framework for understanding the nature of classification of mathematical objects up to some notion of equivalence, and, due to its broad scope, it has natural interactions with many areas of mathematics. A central place in this theory is occupied by countable Borel equivalence relations (CBERs), which arise via actions of countable groups as well as via locally countable graphs. These connections between equivalence relations, group actions, and graphs create an extremely fruitful interplay between descriptive set theory, ergodic theory, measured group theory, and descriptive graph combinatorics. The overarching goal of the proposal is to deepen the understanding of these connections and further the theory of CBERs having major open questions as guiding targets. The projects of the proposal can be grouped into three topics. TREEINGS AND SUBTREEINGS In the study of CBERs, a principal role is played by those that are treeable, i.e. there is an acyclic Borel graph (a treeing) whose connected components are exactly the equivalence classes. These not only form a particularly interesting subclass of CBERs, but also serve as a critical tool for studying all CBERs in general. One project concerns a closure property of the class of treeable CBERs, while others require the development of new constructions of subtreeings, subgraphings, and subforests. The latter concerns the endeavor of structurally witnessing the nonamenability of a group within its free action on a probability space. To attack the main problems here, I propose the development of percolation theory on measured graphs. This is interesting on its own and opens new prospects and questions. QUASI-INVARIANCE A CBER $E$ is better understood when it is probability measure preserving (pmp), Borel automorphism of $E$ preserve a probability measure. This is because a number of techniques from various areas is available for pmp CBERs, including the theory of cost, $\ell^2$-(co)homology, operator algebras, and percolation theory. However, when the CBER is merely quasi-pmp, that is, every Borel automorphism of $E$ only preserves the non-nullness of sets, none of these techniques are available. In my recent work, I develop new tools for dealing with quasi-invariance, using which, I propose to generalize several results known in the pmp setting to the quasi-pmp setting. Furthermore, I have an idea for a definition of cost in this setting, which should be investigated. If promising, I propose developing a theory of quasi-pmp cost. ERGODIC THEOREMS The last topic is devoted to the pointwise ergodic theorems, namely, proving new instances and finding new proofs of known ones using a pointwise-combinatorial tiling argument in the style of my recent proof the Birkhoff ergodic theorem.
一般范围该建议在于波兰空间上的可定义等价关系的广泛范围内,这是描述集合论的现代焦点。这一理论提供了一个一般框架,用于理解数学对象的分类性质,直到某种等价概念,并且由于其广泛的范围,它与许多数学领域有着自然的相互作用。在这个理论中的一个中心位置被可数博雷尔等价关系(CBER)占据,它通过可数群的作用以及通过局部可数图产生。等价关系、群作用和图之间的这些联系在描述性集合论、遍历理论、度量群理论和描述性图组合学之间创造了极其富有成效的相互作用。该提案的总体目标是加深对这些联系的理解,并进一步发展以重大开放问题为指导目标的CBER理论。该提案的项目可分为三个专题。 树和子树在CBER的研究中,主要的角色是由那些可树的,即有一个非循环的Borel图(树),其连接组件正好是等价类。这些不仅形成了CBER的一个特别有趣的子类,而且也是研究所有CBER的关键工具。一个项目涉及一类可树CBERs的封闭属性,而另一些项目则需要开发新的子树、子图和子林结构。后者涉及的奋进,结构性地见证了一个群体在其概率空间上的自由行动的不顺从性。为了解决这里的主要问题,我提出了发展渗流理论的测量图。这本身就很有趣,并开辟了新的前景和问题。当CBER $E$是概率测度保持(pmp)时,它的拟不变性更好理解,$E$的Borel自同构保持概率测度。这是因为有许多不同领域的技术可用于pmp CBER,包括成本理论,$\ell^2 $-(上)同调,算子代数和渗透理论。然而,当CBER仅仅是准pmp时,也就是说,$E$的每个Borel自同构只保持集合的非空性,这些技术都不可用。在我最近的工作中,我开发了新的工具来处理准不变性,使用它,我建议推广几个已知的结果在pmp设置的准pmp设置。此外,我有一个关于在这种情况下成本定义的想法,应该加以研究。如果有希望的话,我建议发展准pmp成本理论。各态历经定理最后一个主题致力于逐点各态历经定理,即以我最近证明伯克霍夫各态历经定理的风格,使用逐点组合平铺论证来证明新实例并找到已知实例的新证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tserunyan, Anush其他文献
Independent sets in algebraic hypergraphs
代数超图中的独立集
- DOI:
10.4171/jems/1082 - 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Bernshteyn, Anton;Delcourt, Michelle;Tserunyan, Anush - 通讯作者:
Tserunyan, Anush
Characterization of saturated graphs related to pairs of disjoint matchings
与不相交匹配对相关的饱和图的表征
- DOI:
10.1215/00192082-9719963 - 发表时间:
2022 - 期刊:
- 影响因子:0.6
- 作者:
Mo, Zhengda;Qunell, Sam;Tserunyan, Anush;Zomback, Jenna - 通讯作者:
Zomback, Jenna
Tserunyan, Anush的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tserunyan, Anush', 18)}}的其他基金
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
RGPIN-2020-07120 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
RGPIN-2020-07120 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
DGECR-2020-00543 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
使用准勒夫波(Quasi-Love)研究西南极构造分界线
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一类无限维quasi-Toeplitz二次矩阵方程的数值解法及相关理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型单相储能型Quasi-Z源光伏系统双模式运行机理及优化控制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
传输噪声驱动的随机分数阶quasi-geostrophic方程
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
糠醇在铝基M-Quasi-MOF催化剂表面的氢解机理及其增产1,5-戊二醇的选择性调控
- 批准号:22005342
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Ricci-Hessian 型黎曼流形的刚性及分类问题研究
- 批准号:11801011
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Quasi 2D-1D耦合水动力洪涝模拟系统的构建及关键技术研究
- 批准号:51809049
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
关于Moment-Angle流形的几个问题
- 批准号:11401118
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
- 批准号:11426209
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
一体化LC滤波器和Quasi-Z源的间接矩阵变换器及其在交流电机变频调速系统中应用的研究
- 批准号:51477008
- 批准年份:2014
- 资助金额:84.0 万元
- 项目类别:面上项目
相似海外基金
Tailoring Quasi-Solid-State 'Water-in-Swelling-Clay' Electrolytes for High-Voltage, Durable Aqueous Zinc-Ion Batteries
为高压、耐用的水性锌离子电池定制准固态“膨胀粘土中的水”电解质
- 批准号:
2324593 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Self-Organizing Wave Formation in Quasi-2D Shear Turbulence
准二维剪切湍流中的自组织波形成
- 批准号:
24K07313 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing commercially viable Quasi-Solid-State Li-S batteries for the Automotive market
为汽车市场开发商业上可行的准固态锂硫电池
- 批准号:
10040939 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative R&D
Measuring the impacts of the Réseau Express Métropolitain (REM) on health, mobility, and equity: A longitudinal study
衡量 Réseau Express Métropolitain (REM) 对健康、流动性和公平性的影响:一项纵向研究
- 批准号:
498301 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Operating Grants
Quasi-Parallel Shocks across the Solar System
整个太阳系的准平行激波
- 批准号:
2897122 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
- 批准号:
2205973 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
- 批准号:
23K17937 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别: