Perturbative Methods in Coupled Lattice Maps and Applications
耦合格子图中的微扰方法及其应用
基本信息
- 批准号:0604518
- 负责人:
- 金额:$ 10.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-15 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using perturbative methods, this project will study properties of dynamical systems of very high dimension called Coupled Lattice Maps. These systems consist of many copies of a given simple and well-understood dynamical system, indexed by the points of a lattice, and interacting through a local coupling. The project will mainly focus on the statistical and geometric properties of solution trajectories. Particular attention will be devoted to global properties, including the fractal dimension of the attractor and the Lyapunov exponents and associated Lyapunov eigenspaces. Of particular interest is the possibility that the statistical properties of such systems may vary discontinuously under small modifications of the parameters that define the system (phase transitions). Finally, the results obtained for these maps will be extended, where possible, to coupled flows.brbrCoupled Lattice Maps are of interest as models in many different areas of research, including Statistical Mechanics, Fluid Dynamics, Neural Systems, Food Chains, and Microeconomics. In most of these fields the interest is in the statistical properties of the trajectories. These properties should explain the emergence of coherent macroscopic behavior, space-time chaos, and phase transitions. The most important characteristic of these models is the intrinsic dynamical instability (chaos) of the local dynamics. The theory of hyperbolic (chaotic) dynamical systems is well developed in systems with few degrees of freedom. Its extension to systems with many degrees of freedom presents new mathematical challenges and a strong potential for applications in the aforementioned fields of study.
使用微扰方法,本项目将研究称为耦合点阵映射的高维动力系统的性质。这些系统由给定的简单且易于理解的动力系统的许多副本组成,由晶格点索引,并通过局部耦合相互作用。该项目将主要关注解轨迹的统计和几何性质。将特别关注全局性质,包括吸引子的分形维数和李雅普诺夫指数以及相关的李雅普诺夫特征空间。特别令人感兴趣的是,在定义系统的参数(相变)的微小修改下,这种系统的统计特性可能不连续地变化。最后,在可能的情况下,对这些映射获得的结果将扩展到耦合流。brbrCoupled Lattice Maps是许多不同研究领域的有趣模型,包括统计力学、流体动力学、神经系统、食物链和微观经济学。在大多数这些领域中,兴趣在于轨迹的统计性质。这些性质可以解释相干宏观行为、时空混沌和相变的出现。这些模型最重要的特征是局部动力学的内在动力学不稳定性(混沌)。双曲(混沌)动力系统理论在低自由度系统中得到了很好的发展。它对多自由度系统的扩展提出了新的数学挑战,并在上述研究领域具有强大的应用潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Federico Bonetto其他文献
Quantum Phase Transition in an Interacting Fermionic Chain
- DOI:
10.1007/s00023-014-0393-6 - 发表时间:
2014-12-31 - 期刊:
- 影响因子:1.300
- 作者:
Federico Bonetto;Vieri Mastropietro - 通讯作者:
Vieri Mastropietro
Federico Bonetto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Federico Bonetto', 18)}}的其他基金
From the Kac Model to Non-Equilibrium Statistical Mechanics
从 Kac 模型到非平衡统计力学
- 批准号:
1907643 - 财政年份:2019
- 资助金额:
$ 10.67万 - 项目类别:
Standard Grant
Quantum Corrections to Classical Approximations
对经典近似的量子修正
- 批准号:
0200235 - 财政年份:2002
- 资助金额:
$ 10.67万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New Coupled-cluster Methods for Linear and Non-linear Valence and Core-level Spectroscopy in Gas and Condensed Phase
气相和凝聚相中线性和非线性价态和核心级光谱学的新耦合簇方法
- 批准号:
2154482 - 财政年份:2022
- 资助金额:
$ 10.67万 - 项目类别:
Standard Grant
Domain Decomposition Methods for Coupled Models of Non-Newtonian Fluids and Solid Structures
非牛顿流体与固体结构耦合模型的域分解方法
- 批准号:
2207971 - 财政年份:2022
- 资助金额:
$ 10.67万 - 项目类别:
Standard Grant
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2022
- 资助金额:
$ 10.67万 - 项目类别:
Discovery Grants Program - Individual
Periodic Coupled Cluster Methods for Optical Activity in Chiral Crystals
手性晶体光学活性的周期性耦合簇方法
- 批准号:
2154452 - 财政年份:2022
- 资助金额:
$ 10.67万 - 项目类别:
Continuing Grant
Identification of the main source of matrix effects in established inductively coupled plasma mass spectroscopy methods
确定已建立的电感耦合等离子体质谱方法中基质效应的主要来源
- 批准号:
565142-2021 - 财政年份:2021
- 资助金额:
$ 10.67万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2021
- 资助金额:
$ 10.67万 - 项目类别:
Discovery Grants Program - Individual
Development of methods to improve the robustness of inductively coupled plasma mass spectrometry while also improving detection limits
开发方法以提高电感耦合等离子体质谱的鲁棒性,同时提高检测限
- 批准号:
503887-2016 - 财政年份:2020
- 资助金额:
$ 10.67万 - 项目类别:
Collaborative Research and Development Grants
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2020
- 资助金额:
$ 10.67万 - 项目类别:
Discovery Grants Program - Individual
Development of consistent simulation methods for electrothermomechanically coupled systems
开发电热机械耦合系统的一致仿真方法
- 批准号:
443238377 - 财政年份:2020
- 资助金额:
$ 10.67万 - 项目类别:
Research Grants
Development of advanced single-molecule fluorescence imaging methods to visualize coupled conformational changes in transcription
开发先进的单分子荧光成像方法,以可视化转录中的耦合构象变化
- 批准号:
2285264 - 财政年份:2019
- 资助金额:
$ 10.67万 - 项目类别:
Studentship