Domain Decomposition Methods for Coupled Models of Non-Newtonian Fluids and Solid Structures

非牛顿流体与固体结构耦合模型的域分解方法

基本信息

  • 批准号:
    2207971
  • 负责人:
  • 金额:
    $ 24.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

There has been increasing interest in numerical studies on fluids interacting with poroelastic structures; however, most numerical and analytical studies in this area have been focused on Newtonian fluids coupled with solid structures, and few analytical and numerical studies have been undertaken on the interaction of non-Newtonian fluids and elastic/poroelastic solids. Non-Newtonian fluid-poroelastic structure interaction (FPSI) problems are themselves of interest to related scientific and engineering communities, as the study of these strongly coupled nonlinear problems leads to a better understanding and a unifying description of complex real-life processes. This research will provide an underlying mathematical foundation for non-Newtonian flows in a multi-physical setting while promoting teaching, training graduate students, and involving undergraduates in research experiences. The proposed research will also benefit the biomedical, polymer, material, and oil industries by providing improved algorithms for the numerical simulation of important processes. The research activity lies in the development of rigorous, efficient, and stable numerical schemes for FPSI problems. Most current research results of FPSI problems discuss numerical methods with matching grids and time steps between subproblems in either a monolithic or partitioned setting. The goal of the research is to design domain decomposition methods for non-Newtonian FPSI systems that allow local space and time discretization. At the same time, the theoretical accuracy and stability properties of the numerical schemes will be analyzed. Specifically, we have five main objectives for this project: (i) develop and analyze parallel, accurate, efficient decoupling algorithms based on global-in-time, non-overlapping domain decomposition for non-Newtonian FPSI systems; (ii) develop and analyze accurate discretization and projection methods in time to effectively handle non-Newtonian FPSI systems with a large difference in local time scales; (iii) study the well-posedness of the viscoelastic FPSI system; (iv) develop and analyze accurate and efficient discretization methods for viscoelastic FPSI systems based on weighted least-squares finite element methods; (v) educate and train graduate and undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体与多孔弹性结构相互作用的数值研究越来越受到人们的关注;然而,在这一领域的大多数数值和分析研究都集中在牛顿流体与固体结构的耦合上,很少有分析和数值研究非牛顿流体与弹性/多孔弹性固体的相互作用。非牛顿流体-多孔弹性结构相互作用(FPSI)问题本身是相关科学和工程界感兴趣的,因为对这些强耦合非线性问题的研究可以更好地理解和统一描述复杂的现实生活过程。这项研究将为多物理环境中的非牛顿流动提供一个潜在的数学基础,同时促进教学,培养研究生,并让本科生参与研究经验。拟议的研究还将有利于生物医学,聚合物,材料和石油工业,通过提供改进的算法的数值模拟的重要过程。研究活动在于开发严格,高效,稳定的数值计划FPSI问题。目前FPSI问题的研究成果大多是在整体或分区的情况下讨论子问题之间采用匹配网格和时间步长的数值方法。研究的目标是为非牛顿FPSI系统设计允许局部空间和时间离散化的区域分解方法。同时,对数值格式的理论精度和稳定性进行了分析。具体来说,我们有五个主要目标,这个项目:(i)开发和分析并行,准确,有效的解耦算法的基础上的全球时间,非重叠区域分解的非牛顿FPSI系统;(ii)开发和分析准确的离散和投影方法的时间,以有效地处理非牛顿FPSI系统的当地时间尺度有很大的差异;(iii)研究粘弹性FPSI系统的适定性;(iv)基于加权最小二乘有限元方法开发和分析粘弹性FPSI系统准确有效的离散方法;(五)教育和培训研究生和本科生。该奖项反映了NSF的法定使命,并通过评估被认为值得支持使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hyesuk Lee其他文献

Domain decomposition with local time discretization for the nonlinear Stokes–Biot system
  • DOI:
    10.1016/j.cam.2024.116311
  • 发表时间:
    2025-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Hemanta Kunwar;Hyesuk Lee
  • 通讯作者:
    Hyesuk Lee
A Lagrange multiplier method for fluid-structure interaction: Well-posedness and domain decomposition
用于流体-结构相互作用的拉格朗日乘子法:适定性与区域分解
  • DOI:
    10.1016/j.camwa.2024.12.020
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Amy de Castro;Hyesuk Lee;Margaret M. Wiecek
  • 通讯作者:
    Margaret M. Wiecek
Approximation of viscoelastic flows with defective boundary conditions
  • DOI:
    10.1016/j.jnnfm.2011.12.002
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Keith J. Galvin;Hyesuk Lee;Leo G. Rebholz
  • 通讯作者:
    Leo G. Rebholz
Analysis and finite element approximation of an optimal control problem for the Oseen viscoelastic fluid flow
  • DOI:
    10.1016/j.jmaa.2007.03.048
  • 发表时间:
    2007-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Hyung-Chun Lee;Hyesuk Lee
  • 通讯作者:
    Hyesuk Lee
Numerical Simulations of Viscoelastic Fluid Flows Past a Transverse Slot Using Least-Squares Finite Element Methods
使用最小二乘有限元方法对流过横向槽的粘弹性流体进行数值模拟

Hyesuk Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hyesuk Lee', 18)}}的其他基金

Algorithm Development and Analysis for Non-Newtonian Fluids Interacting with Elastic and Poroelastic Structures
非牛顿流体与弹性和多孔弹性结构相互作用的算法开发和分析
  • 批准号:
    1818842
  • 财政年份:
    2018
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Numerical methods for non-Newtonian fluid structure interaction problems
非牛顿流体结构相互作用问题的数值方法
  • 批准号:
    1418960
  • 财政年份:
    2014
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Numerical Approximations of Non-Newtonian Fluid Flows with Applications
非牛顿流体流动的数值近似及其应用
  • 批准号:
    1016182
  • 财政年份:
    2010
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant

相似海外基金

Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
  • 批准号:
    RGPIN-2022-04571
  • 财政年份:
    2022
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Discovery Grants Program - Individual
Domain decomposition methods based on proper generalized decomposition for parametric heterogeneous problems
基于适当广义分解的参数异构问题域分解方法
  • 批准号:
    EP/V027603/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
  • 批准号:
    20K19813
  • 财政年份:
    2020
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Domain decomposition methods for electronic structure calculations
电子结构计算的域分解方法
  • 批准号:
    411724963
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grants
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
  • 批准号:
    1913201
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
  • 批准号:
    1913004
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Global-in-Time Domain Decomposition Methods for Evolution Partial Differential Equations with Applications to Flow and Transport in Fractured Porous Media
演化偏微分方程的全局时域分解方法及其在裂隙多孔介质流动和输运中的应用
  • 批准号:
    1912626
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Optimized Domain Decomposition Methods for Wave Propagation in Complex Media
复杂介质中波传播的优化域分解方法
  • 批准号:
    1908602
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Continuing Grant
International Workshop on Domain Decomposition Methods for PDEs
偏微分方程域分解方法国际研讨会
  • 批准号:
    1543876
  • 财政年份:
    2015
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Domain Decomposition Methods: Algorithms and Theory
领域分解方法:算法和理论
  • 批准号:
    1522736
  • 财政年份:
    2015
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了