Statistical Inference for High Frequency Data

高频数据的统计推断

基本信息

  • 批准号:
    0604758
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

The project will investigate the estimation of volatility-like objects in the context of the hidden semi-martingale model. Apart from volatility, we are concerned with co-variations, ANOVA, leverage effect, and related quantities. The project uses ideas from contiguity and unbiased estimation to find such estimators. Data are assumed to have high frequency, so that small-interval asymptotics will be used. A main part of the project is concerned with the applications of such estimators. The investigator's earlier findings on nonparametric, trading based, risk management for options will be interfaced with the estimators to find complete procedures for safely unwinding dangerous positions. The estimators will also be combined with forecasting techniques to provide high-frequency based competitors to latent volatility models like GARCH. We can here draw on the martingale type error structure in the high frequency estimation. The economic value of the estimators in terms of portfolio management will also be investigated. A main background for the project is the increasing availability of high frequency data for financial securities prices. This permits, in principle, very precise determination of volatility and similar characteristics of prices. The investigator's finding, however, that prices behave as if they have measurement error, raises a number of questions about how the statistics is carried out. This project will be concerned with both estimation, and applications to risk management, forecasting, portfolio management, and regulation. The results are of interest to investors, regulators, and policymakers.
该项目将研究在隐半鞅模型的背景下对波动性类对象的估计。除了波动性,我们还关注协变、方差分析、杠杆效应和相关量。该项目使用的思想,从邻近和无偏估计,以找到这样的估计。假设数据具有高频率,因此将使用小区间渐近。该项目的一个主要部分是与这些估计的应用。 调查员的早期发现非参数,交易为基础,风险管理的选择将接口与估计,以找到完整的程序,安全解除危险的立场。估计器还将与预测技术相结合,为潜在波动率模型(如GARCH)提供基于高频的竞争对手。在这里,我们可以利用鞅型误差结构在高频估计。还将研究估计量在投资组合管理方面的经济价值。该项目的一个主要背景是金融证券价格的高频数据越来越多。原则上,这允许非常精确地确定价格的波动性和类似特征。然而,调查人员发现,价格的表现似乎存在测量误差,这就提出了一些关于如何进行统计的问题。这个项目将涉及估计,并应用于风险管理,预测,投资组合管理和监管。投资者、监管机构和政策制定者对结果感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Per Mykland其他文献

Per Mykland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Per Mykland', 18)}}的其他基金

Collaborative Research: Statistical Inference for High Dimensional and High Frequency Data
合作研究:高维高频数据的统计推断
  • 批准号:
    2015544
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Inference for High-Frequency Data
合作研究:高频数据的统计推断
  • 批准号:
    1713129
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Better efficiency, better forecasting, better accuracy: A new light on the dependence structure in high frequency data
协作研究:更高的效率、更好的预测、更高的准确性:高频数据中依赖结构的新视角
  • 批准号:
    1407812
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Statistical Inference for High Frequency Data
高频数据的统计推断
  • 批准号:
    1124526
  • 财政年份:
    2011
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Inference and Ill-Posedness for Financial High Frequency Data
金融高频数据的推理和不适定
  • 批准号:
    0631605
  • 财政年份:
    2007
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Is Deliberate Misspecification Desirable? Statistical Study of Financial and Other Time-Dependent Data
故意错误指定是可取的吗?
  • 批准号:
    0204639
  • 财政年份:
    2002
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Statistics and Finance
统计与金融
  • 批准号:
    9971738
  • 财政年份:
    1999
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Artificial and Approximate Likelihoods
人工和近似可能性
  • 批准号:
    9626266
  • 财政年份:
    1996
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Expanison and Likelihood Methods forMartingales and Martingale Inference
数学科学:鞅和鞅推理的展开和似然方法
  • 批准号:
    9305601
  • 财政年份:
    1993
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Statistical Inference for High Dimensional and High Frequency Data
合作研究:高维高频数据的统计推断
  • 批准号:
    2015530
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Inference for High Dimensional and High Frequency Data
合作研究:高维高频数据的统计推断
  • 批准号:
    2015544
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Statistical inference and model selection for high-frequency financial data
高频金融数据的统计推断与模型选择
  • 批准号:
    19K13671
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Statistical Inference for High-Frequency Data
合作研究:高频数据的统计推断
  • 批准号:
    1713118
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Inference for High-Frequency Data
合作研究:高频数据的统计推断
  • 批准号:
    1713129
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Statistical inference for stochastic processes and application to high-frequency financial data
随机过程的统计推断及其在高频金融数据中的应用
  • 批准号:
    15K21598
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Inference Theory in the frequency domain of spatio-temporal statistical analysis
时空统计分析频域推理理论
  • 批准号:
    15K11994
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Statistical inference and empirical analysis of high frequency market data
高频市场数据的统计推断与实证分析
  • 批准号:
    25245034
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Statistical inference for stochastic differential equations and its applications to high frequency data analysis
随机微分方程的统计推断及其在高频数据分析中的应用
  • 批准号:
    24300107
  • 财政年份:
    2012
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Inference for High Frequency Data
高频数据的统计推断
  • 批准号:
    1124526
  • 财政年份:
    2011
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了