Empirical Likelihood and Censored Quantile Regression
经验似然和截尾分位数回归
基本信息
- 批准号:0604920
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the development of statistical methodologies in the regression analysis of censored data that can model both the average and extreme responses. The investigators will develop a novel empirical likelihood (EL) approach for the accelerated failure time (AFT) model and censored quantile regression. Empirical likelihood is a recently developed nonparametric inference method with asymptotic properties similar to the parametric maximum likelihood. The novel EL approach uses sample points casewise and is less stringent than previously proposed residual based empirical likelihood: the sample points are not required to be identically distributed, and a more general form of heteroscedasticity is permitted. An interesting application of the proposed approach is to censored quantile regression. While quantile regression has appeared as an alternative to the least squares with uncensored data as it provides more complete information about the conditional distribution of the response, its application to censored data has been limited due to the lack of an efficient inference method, among other reasons. The proposed EL approach will advance quantile analysis in censored regression and extend the domain of EL inference in general.The proposed research is of high federal strategic interest because the results will accelerate many health, medical, and economic research projects where data is incomplete and abnormal cases rather than the average are of interest, such as low birth weight, high ozone concentration, cancer survival rates, or high yield stock, among others. Traditional analyses focus on the center of the data and implicitly assume that the results found for the average group are generalizable to the entire patient group. However, this is usually not the case. For example, an investigator in a survival study of cancer patients may find that certain molecular biomarkers are prognostic factors only for those ovarian cancer patients who die exceptionally early compared to others in the same reference group. The quantile regression technique with the proposed inference procedure permits the investigation of the biomarkers without constraining their effects for different subpopulations to be same as for the average group. Therefore, the proposed method can better inform health professionals of the effects of physiological and molecular biomarkers on different subpopulations and provide a useful prognostic tool for the overall and progression free survival times.
该项目涉及发展对删失数据进行回归分析的统计方法,这种方法可以模拟平均和极端反应。研究人员将为加速失效时间(AFT)模型和删失分位数回归开发一种新的经验似然(EL)方法。经验似然法是近年来发展起来的一种非参数推断方法,具有类似于参数极大似然法的渐近性质。新的EL方法使用样本点casewise和不太严格比以前提出的基于残差的经验似然:样本点不需要是同分布的,和一个更一般形式的异方差是允许的。一个有趣的应用所提出的方法是删失分位数回归。虽然分位数回归已经出现作为一种替代最小二乘与未经审查的数据,因为它提供了更完整的信息的条件分布的响应,其应用已被限制,由于缺乏一个有效的推理方法,除其他原因。建议的EL方法将推进删失回归中的分位数分析,并扩展EL推断的领域。建议的研究具有高度的联邦战略利益,因为其结果将加速许多健康,医学和经济研究项目,其中数据不完整,异常情况而不是平均情况,如低出生体重,高臭氧浓度,癌症存活率,或高收益股票等等。传统的分析集中在数据的中心,并隐含地假设平均组的结果可推广到整个患者组。然而,通常情况并非如此。例如,在癌症患者的生存研究中,研究人员可能会发现某些分子生物标志物仅对那些与同一参考组中的其他人相比死亡特别早的卵巢癌患者是预后因素。分位数回归技术与建议的推理程序允许调查的生物标志物,而不限制其影响不同的亚群是相同的平均组。因此,所提出的方法可以更好地告知卫生专业人员生理和分子生物标志物对不同亚群的影响,并为总体和无进展生存时间提供有用的预后工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mai Zhou其他文献
Notes on Counting Process in Survival Analysis
生存分析中计数过程的注意事项
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mai Zhou - 通讯作者:
Mai Zhou
Learning Styles and Teaching Styles in College English Teaching
大学英语教学中的学习方式和教学方式
- DOI:
10.5539/ies.v4n1p73 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Mai Zhou - 通讯作者:
Mai Zhou
Hopf Algebras Consisting of Finite Sets
由有限集组成的 Hopf 代数
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Mai Zhou - 通讯作者:
Mai Zhou
Regression analysis with censored data: Extensions of Koul–Susarla–Van Ryzin approach
使用删失数据进行回归分析:Koul–Susarla–Van Ryzin 方法的扩展
- DOI:
10.1016/s0167-7152(98)00159-x - 发表时间:
1999 - 期刊:
- 影响因子:0.8
- 作者:
Mai Zhou - 通讯作者:
Mai Zhou
Iterative Least Squares Estimator of Binary Choice Models: a Semi-Parametric Approach
二元选择模型的迭代最小二乘估计:半参数方法
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Weiren Wang;Mai Zhou - 通讯作者:
Mai Zhou
Mai Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mai Zhou', 18)}}的其他基金
Collaborative Research: Extension of Quantile Regression and Empirical Likelihood Analysis for Censored Data
合作研究:分位数回归的扩展和截尾数据的经验似然分析
- 批准号:
1007666 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Leveraging Telehealth to Identify Infants at Elevated Likelihood for Autism in the First Year of life
利用远程医疗来识别出生后第一年患自闭症可能性较高的婴儿
- 批准号:
10712632 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mobile app to identify children with high likelihood of autism diagnosis
用于识别自闭症诊断可能性高的儿童的移动应用程序
- 批准号:
10056705 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Sieve based full likelihood approach for the Cox proportional hazards model with applications to immunotherapies trials
基于筛法的 Cox 比例风险模型的完全似然法及其在免疫治疗试验中的应用
- 批准号:
10577723 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
- 批准号:
23H00480 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
A new parametric model, likelihood methods, and other advancements for multivariate extremes
新的参数模型、似然方法和多元极值的其他进步
- 批准号:
2311164 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Individualized approaches to determining likelihood of ASD caseness
确定 ASD 病例可能性的个体化方法
- 批准号:
10522317 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Likelihood-based Tests for the Number of Components/Regimes in Finite Mixture and Markov Regime Switching Models
有限混合和马尔可夫政权切换模型中组件/政权数量的基于似然的检验
- 批准号:
RGPIN-2019-04047 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CDS&E: Accelerating Astrophysical Insight at Scale with Likelihood-Free Inference
CDS
- 批准号:
2206744 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




