A new parametric model, likelihood methods, and other advancements for multivariate extremes

新的参数模型、似然方法和多元极值的其他进步

基本信息

  • 批准号:
    2311164
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Understanding extremal dependence in high dimensions is essential for quantifying risk arising from a combination of multiple factors in a variety of disciplines including the environmental and climate sciences. When dependence is described by covariance, many statistical methods exist to characterize and model structure for high-dimensional data. Covariance, however, is a poor descriptor of a distribution's joint tail and methods specifically designed for extremes are necessary for accurate quantification of joint risk. While theoretically-justified frameworks for describing extremal dependence are known, statistical methods for high dimensional extremes are very much needed by practitioners. Building on the investigator's previous work, this project will present and develop the properties of a new multivariate distribution for extremes. The distribution is characterized by a parameter matrix which summarizes pairwise tail dependencies like a covariance matrix, but which is linked to a theoretically-justified framework for extremes. This distribution, coupled with tools in development by the investigator, will allow a practitioner to model and characterize risk for high dimensional data arising in finance, insurance, or meteorological applications. The project will also involve training a graduate student in extreme value analysis and collaboration with atmospheric scientists in government labs.In more detail, recent work on transformed-linear models for extremes coupled with characterizing extremal dependence via the tail pairwise dependence matrix (TPDM) has built connections between extremes modeling and traditional linear statistics methods. Extremal analogues to principal component analysis, spatial autoregressive models, linear autoregressive moving average (ARMA) time series models, linear prediction, and partial correlation have been constructed. However, parameter estimation has thus far been somewhat ad-hoc, and has been based minimizing squared differences between the model's TPDM values and empirical estimates. This project presents a new probability distribution, the transformed-linear T-distribution, which has the TPDM as a parameter. As this distribution has a closed-form density, it makes likelihood estimation of the TPDM possible. Additionally, this project will extend the investigator's recent linear time series work to build non-causal models, as the causal analogs to classical ARMA models show an asymmetry not seen in the data. This project will also extend the recent partial tail correlation work to add causal direction to the graphical models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解高维的极值依赖对于量化包括环境和气候科学在内的各种学科中多种因素组合所产生的风险至关重要。 当相关性由协方差描述时,存在许多统计方法来表征和建模高维数据的结构。 然而,协方差是一个差的描述分布的联合尾部和方法,专门设计的极端是必要的联合风险的准确量化。 虽然用于描述极值依赖的理论上合理的框架是已知的,但实践者非常需要用于高维极值的统计方法。 基于研究者以前的工作,这个项目将提出并发展一个新的极端多元分布的属性。 该分布的特征在于一个参数矩阵,它总结了成对的尾部依赖性,如协方差矩阵,但它与一个理论上合理的极端框架相关联。 这种分布,再加上由研究者开发的工具,将允许从业者建模和表征金融,保险或气象应用中产生的高维数据的风险。该项目还将涉及培训一名研究生进行极值分析,并与政府实验室的大气科学家合作。更详细地说,最近关于极值的变换线性模型的工作,以及通过尾部成对依赖矩阵(TPDM)表征极值依赖的工作,已经在极值建模和传统线性统计方法之间建立了联系。极值类似主成分分析,空间自回归模型,线性自回归移动平均(阿尔马)时间序列模型,线性预测,偏相关已经建成。然而,参数估计到目前为止已经有点ad-hoc,并已基于最小化模型的TPDM值和经验估计之间的平方差。 本计画提出一种新的机率分布,即以TPDM为参数的转换线性T分布。 由于该分布具有封闭形式的密度,因此它使得TPDM的似然估计成为可能。 此外,该项目将扩展研究人员最近的线性时间序列工作,以建立非因果模型,因为经典阿尔马模型的因果类似物显示数据中没有看到的不对称性。 该项目还将扩展最近的部分尾部相关工作,为图形模型添加因果方向。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Cooley其他文献

A response to the commentary of M. Dąbski about the paper ‛Asynchronous Little Ice Age glacial maximum extent in southeast Iceland’ (Geomorphology (2010), 114, 253–260)
  • DOI:
    10.1016/j.geomorph.2010.12.024
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marie Chenet;Erwan Roussel;Vincent Jomelli;Delphine Grancher;Daniel Cooley
  • 通讯作者:
    Daniel Cooley
Assessment study of lichenometric methods for dating surfaces
地表测年方法评估研究
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Jomelli;Delphine Grancher;P. Naveau;Daniel Cooley;D. Brunstein
  • 通讯作者:
    D. Brunstein
Multiple Indicators of Extreme Changes in Snow-Dominated Streamflow Regimes, Yakima River Basin Region, USA
美国亚基马河流域地区积雪主导的水流状况极端变化的多项指标
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Wagner;K. Bennett;G. Liston;C. Hiemstra;Daniel Cooley
  • 通讯作者:
    Daniel Cooley
Modeling the upper tail of the distribution of facial recognition non-match scores
对面部识别不匹配分数分布的上尾部进行建模
  • DOI:
    10.4310/sii.2017.v10.n4.a13
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brett D. Hunter;Daniel Cooley;Cole Givens;P. Kokoszka;Bailey Fosdick;Henry Adams;R. Beveridge
  • 通讯作者:
    R. Beveridge
Low-power design techniques with process tagging and dynamic power management
具有流程标记和动态电源管理的低功耗设计技术

Daniel Cooley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Cooley', 18)}}的其他基金

Extremes Models and Methods from Transformed Linear Operations
变换线性运算的极值模型和方法
  • 批准号:
    1811657
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EaSM 2 Advancing extreme value analysis of high impact climate and weather events
合作研究:EaSM 2 推进高影响气候和天气事件的极值分析
  • 批准号:
    1243102
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Models for Extremes on a Spatial Lattice
空间格上的极值模型
  • 批准号:
    0905315
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
  • 批准号:
    10929242
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Development and Application of T1rho Dispersion Imaging of Aging Muscle
衰老肌肉T1rho色散成像的开发与应用
  • 批准号:
    10428316
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Semi-parametric mixture models: algorithms, prediction, fit assessment, model comparison
半参数混合模型:算法、预测、拟合评估、模型比较
  • 批准号:
    RGPIN-2020-07079
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of T1rho Dispersion Imaging of Aging Muscle
衰老肌肉T1rho色散成像的开发与应用
  • 批准号:
    10629331
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
A 0.5 mm resolution total-body small-animal PET
分辨率为 0.5 毫米的小动物全身 PET
  • 批准号:
    10446975
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
  • 批准号:
    10501804
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Parametric Response Mapping (PRM) for the detection of chronic lung injury in hematopoietic cell transplant recipients
用于检测造血细胞移植受者慢性肺损伤的参数响应图 (PRM)
  • 批准号:
    10683080
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Development of AI/ML-ready shared repository for parametric multiphysics modeling datasets: standardization for predictive modeling of selective brain cooling after traumatic injury
开发用于参数多物理场建模数据集的 AI/ML 就绪共享存储库:创伤后选择性脑冷却预测模型的标准化
  • 批准号:
    10842926
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Parametric Response Mapping (PRM) for the detection of chronic lung injury in hematopoietic cell transplant recipients
用于检测造血细胞移植受者慢性肺损伤的参数响应图 (PRM)
  • 批准号:
    10414583
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
A 0.5 mm resolution total-body small-animal PET
分辨率为 0.5 毫米的小动物全身 PET
  • 批准号:
    10598107
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了