Optimal Design of Experiments for Correlated Observations

相关观测实验的优化设计

基本信息

项目摘要

ABSTRACT:Much research has been done on the optimal design of experiments for independent observations, while for correlated observations there are still many challenging problems that remain to be solved. The investigators develop optimality criteria which quantify the uncertainty for complex models of correlated observations, including spatial Gaussian and non-Gaussian random field models and extreme value processes. Algorithms based on newly developed optimization techniques and extensions of design measures to correlated observations are investigated as well. The intellectual merit of the research is new theory, methodology, and computational techniques for design, in particular spatial and space-time designs where the correlations between observations cannot be ignored. This includes theories for quantifying uncertainties in spatial prediction, design algorithms using quadratic and semidefinite programming, and novel ways of defining design measure for correlated observations and their application in space-time design.In many applications, data are collected from a network of monitors in space and time to make predictions. The investigators study the problem of how to optimally place the monitors so that one can have the most accurate prediction. The direct motivation of this work is from environmental science, where networks are used to monitor the pollutants. Air pollution is known to be associated with human health, and the methods developed in this proposal can help researchers quantify the uncertainties in the pollution estimates, which may contribute to better understanding of the association between pollution and human health. In particular interactions with EPA researchers may lead to improved monitoring of atmospheric pollutants. The investigators also intend to study possible applications to Project BioWatch, which provides an early warning system for bio-threats. The impact of this research is not limited to the environmental science, as the methods and algorithm are in principle applicable to many other fields such as climatology and chemical kinetic models.
摘要:对于独立观测的最优实验设计,人们已经做了大量的研究,而对于相关观测,仍然有许多具有挑战性的问题有待解决。研究人员开发了量化相关观测的复杂模型的不确定性的最优性标准,包括空间高斯和非高斯随机场模型和极值过程。算法的基础上,新开发的优化技术和扩展的设计措施,相关的意见进行了研究。该研究的智力价值是设计的新理论,方法和计算技术,特别是空间和时空设计,其中观测之间的相关性不容忽视。这包括量化空间预测中的不确定性的理论,使用二次和半定规划的设计算法,以及定义相关观测的设计度量的新方法及其在时空设计中的应用。研究人员研究如何最佳地放置监测器的问题,以便能够进行最准确的预测。这项工作的直接动机来自环境科学,其中网络用于监测污染物。众所周知,空气污染与人类健康有关,本提案中开发的方法可以帮助研究人员量化污染估计中的不确定性,这可能有助于更好地了解污染与人类健康之间的关系。特别是与环境保护局研究人员的互动可能会改善对大气污染物的监测。调查人员还打算研究生物监测项目的可能应用,该项目提供了一个生物威胁预警系统。这项研究的影响不仅限于环境科学,因为方法和算法原则上适用于许多其他领域,如气候学和化学动力学模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhengyuan Zhu其他文献

Sensory learning : from neural mechanisms to rehabilitation
感觉学习:从神经机制到康复
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing Zhong;Wei Wang;Jijing Li;Yiyao Wang;Xiaoqing Hu;Lei Feng;Q. Ye;Yiming Luo;Zhengyuan Zhu;Jinrong Li;Jin Yuan
  • 通讯作者:
    Jin Yuan
Modeling nonstationary covariance function with convolution on sphere
  • DOI:
    10.1016/j.csda.2016.07.001
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yang Li;Zhengyuan Zhu
  • 通讯作者:
    Zhengyuan Zhu
Equating NHANES Monitor-Based Physical Activity to Self-Reported Methods to Enhance Ongoing Surveillance Efforts
将 NHANES 基于监测的身体活动等同于自我报告方法,以加强持续的监测工作
  • DOI:
    10.1249/mss.0000000000003123
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    G. Welk;Nicholas R. Lamoureux;Chengpeng Zeng;Zhengyuan Zhu;Emily J. Berg;D. Wolff;R. Troiano
  • 通讯作者:
    R. Troiano
Spatiotemporal Balanced Sampling Design for Longitudinal Area Surveys
Multi-Resolution Anomaly Detection for the internet
互联网多分辨率异常检测
  • DOI:
    10.1109/infocom.2008.4544618
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingsong Zhang;Zhengyuan Zhu;K. Jeffay;J. Marron;F. D. Smith
  • 通讯作者:
    F. D. Smith

Zhengyuan Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhengyuan Zhu', 18)}}的其他基金

UNS: Integrated assessments of urbanization impacts on building energy use for urban energy sustainability
UNS:城市化对建筑能源使用影响的综合评估,以实现城市能源可持续性
  • 批准号:
    2041859
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Advances in optimal design of nonlinear experiments based on quantum information geometry
基于量子信息几何的非线性实验优化设计研究进展
  • 批准号:
    21K11749
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-objective optimal design of experiments
多目标优化实验设计
  • 批准号:
    EP/T021624/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
  • 批准号:
    1935729
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
  • 批准号:
    1811363
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust and optimal design of experiments for models with possible misspecifications
针对可能存在错误规格的模型进行稳健且优化的实验设计
  • 批准号:
    RGPIN-2014-04935
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
  • 批准号:
    1812013
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
  • 批准号:
    1811291
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust and optimal design of experiments for models with possible misspecifications
针对可能存在错误规格的模型进行稳健且优化的实验设计
  • 批准号:
    RGPIN-2014-04935
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Optimal design and analysis for two-phase experiments with random block and treatment effects
随机区组和处理效果两阶段实验的优化设计与分析
  • 批准号:
    317047028
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Robust and optimal design of experiments for models with possible misspecifications
针对可能存在错误规格的模型进行稳健且优化的实验设计
  • 批准号:
    RGPIN-2014-04935
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了