Nanocrystalline Alumina and Titania under High Pressure and Temperature
高压高温下的纳米晶氧化铝和二氧化钛
基本信息
- 批准号:0605493
- 负责人:
- 金额:$ 41.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION Nanocrystalline materials, materials that are smaller than light waves, have become of great scientific interest, due to interesting physics and their related technological impact. For example, nanocrystals are a key component of bone and teeth, they are used in drug delivery systems and various other technologies, and their uses will become increasingly widespread. To gain a better understanding of these materials, the principal investigator will study two important ceramics, alumina and titania, by subjecting them to high pressures and high temperatures. Application of such extreme conditions can significantly alter a material's structure. For example, it is through high pressure and temperature that more than 100 tons of graphite are converted into diamond each year. In this work, the reaction of the nanocrystalline ceramics to high pressure and temperature will studied, in order to obtain a better understanding of nanocrystalline materials in general and possibly to create new, useful materials. Researchers in the high-pressure lab will work with the staff at Science City, Kansas City's Science Museum, to bring high-pressure physics to the public. A remote-controlled, high-pressure rig will be installed and loaded with liquid water. Patrons will be able to vary the pressure, and observe that when subjected to high pressure (nine thousand times atmospheric pressure) liquid water solidifies, becoming ice. This process is reversible and can be repeated. A computerized presentation will run concurrently to explain what is going on and also other aspects of high-pressure physics. TECHNICAL DETAILS Synchrotron based x-ray diffraction, Raman spectroscopy, fluorescence spectroscopy and transmission electron microscopy will be used to study the effects of high pressures and temperatures on nanocrystalline samples of alumina and titania. Grain growth, changes in local bonding, the phase diagrams, the kinetics of phase transitions and the elastic properties of these ceramics, will be explored as functions of particle size, pressure, pressure-transmitting medium and temperature. It is clear that the properties of a nanocrystal, even its structure, can be very different from the bulk crystal and also sensitive to the particle's size and environment. Thus changes in the above listed parameters will profoundly affect the nanocrystals and allow for a deep understanding of the smallest of crystals. The variation of the compressibility of alumina with particle size (~150 GPa at 6 nm and ~240 GPa at 67 nm) is just one example of how rich a field of study nanoparticle research is. The proposed research will further the possibilities of tuning a material's properties to fit different technological needs while also opening opportunities of creating new, technologically useful materials. Graduate students will be trained in the use of all of the above-mentioned techniques, giving them the ability to fully characterize materials. Graduate students will also get training in communicating the results of science to the public, through a collaboration with Science City, Kansas City's science museum. In this collaboration, the high-pressure group will install a remote controlled diamond anvil cell to demonstrate pressure-induced freezing and melting of water.
纳米晶体材料是一种比光波还小的材料,由于其有趣的物理学和相关的技术影响,纳米晶体材料已经引起了人们极大的科学兴趣。例如,纳米晶体是骨骼和牙齿的关键组成部分,它们被用于药物输送系统和各种其他技术,并且它们的用途将变得越来越广泛。为了更好地了解这些材料,首席研究员将研究两种重要的陶瓷,氧化铝和二氧化钛,将它们置于高压和高温下。这种极端条件的应用会显著改变材料的结构。例如,每年有超过100吨的石墨通过高压和高温转化为钻石。在这项工作中,将研究纳米晶陶瓷对高压和高温的反应,以便更好地了解纳米晶材料的一般情况,并可能创造新的有用的材料。高压实验室的研究人员将与堪萨斯城科学博物馆科学城的工作人员合作,将高压物理学带给公众。一个远程控制的高压钻井平台将被安装并装载液态水。顾客可以改变压力,并观察到当受到高压(9000倍大气压)时,液态水凝固,变成冰。这个过程是可逆的,可以重复。计算机演示将同时进行,以解释正在发生的事情以及高压物理的其他方面。基于同步加速器的x射线衍射、拉曼光谱、荧光光谱和透射电子显微镜将用于研究高压和温度对氧化铝和二氧化钛纳米晶样品的影响。晶粒生长、局部键合的变化、相图、相变动力学和这些陶瓷的弹性性能,将作为粒径、压力、传压介质和温度的函数进行探索。很明显,纳米晶体的特性,甚至它的结构,可能与大块晶体有很大的不同,而且对粒子的大小和环境也很敏感。因此,上述参数的变化将深刻地影响纳米晶体,并允许对最小晶体的深入了解。氧化铝的可压缩性随粒径的变化(在6纳米处约150 GPa,在67纳米处约240 GPa)只是纳米颗粒研究领域多么丰富的一个例子。拟议的研究将进一步调整材料特性以适应不同技术需求的可能性,同时也为创造新的、技术上有用的材料提供了机会。研究生将接受使用上述所有技术的培训,使他们能够充分表征材料。研究生还将通过与堪萨斯城科学博物馆科学城的合作,获得向公众传播科学成果的培训。在这次合作中,高压小组将安装一个远程控制的钻石砧细胞来演示压力引起的水的冻结和融化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kruger其他文献
Constructing a low cost and low powered cluster with Parallella boards
使用 Parallella 板构建低成本、低功耗集群
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Michael Kruger - 通讯作者:
Michael Kruger
Building a Parallella board cluster
构建 Parallella 板集群
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Michael Kruger - 通讯作者:
Michael Kruger
A Prospective Investigation of the Biopro<sup>®</sup> Hemi-Arthroplasty for the First Metatarsophalangeal Joint
- DOI:
10.1053/j.jfas.2008.06.011 - 发表时间:
2008-11-01 - 期刊:
- 影响因子:
- 作者:
Charles G. Kissel;Zeeshan S. Husain;Paul H. Wooley;Michael Kruger;Mark A. Schumaker;Michael Sullivan;Todd Snoeyink - 通讯作者:
Todd Snoeyink
Electrified Aircraft Trade-Space Exploration
电动飞机贸易空间探索
- DOI:
10.2514/6.2018-4227 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michael Kruger;Saakar Byahut;A. Uranga;Jonas Gonzalez;D. K. Hall;Aidan Dowdle - 通讯作者:
Aidan Dowdle
Prognostische Faktoren zur Beurteilung der Wertigkeit der ASK bei Gonarthrose
Gonarthrose 的 ASK 预测因素
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
F. Mazoochian;M. Pietschmann;Michael Kruger;V. Jansson;P. Müller - 通讯作者:
P. Müller
Michael Kruger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kruger', 18)}}的其他基金
CAREER: Pressure-Induced Amorphization and Materials Synthesis Under High Pressure Techniques
职业:高压技术下的压力诱导非晶化和材料合成
- 批准号:
9733956 - 财政年份:1998
- 资助金额:
$ 41.64万 - 项目类别:
Continuing Grant
相似海外基金
Evaluation of Effect on Space Environment of Alumina Slag exhausted from Solid Rocket Motor
固体火箭发动机排出氧化铝渣对空间环境的影响评价
- 批准号:
23K04233 - 财政年份:2023
- 资助金额:
$ 41.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improvement of Radiation Resistance of Alumina Scales Formed on FeCrAl ODS Alloys by Microstructure Control
通过微观结构控制提高 FeCrAl ODS 合金上形成的氧化铝鳞片的耐辐射性能
- 批准号:
23K13684 - 财政年份:2023
- 资助金额:
$ 41.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Regeneration of Phosphorous Saturated Activated Alumina
磷饱和活性氧化铝的再生
- 批准号:
CCARD-2022-00214 - 财政年份:2022
- 资助金额:
$ 41.64万 - 项目类别:
CCI Applied Research and Development Grants
Study of the dissolution kinetic of alumina powder injected in cryolite, by experimental and theoritical analysis with regards to thermal, chemical and flow conditions.
通过热、化学和流动条件的实验和理论分析,研究注入冰晶石中的氧化铝粉末的溶解动力学。
- 批准号:
569561-2022 - 财政年份:2022
- 资助金额:
$ 41.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Doped alumina with tailored material properties for battery applications
具有适合电池应用的定制材料特性的掺杂氧化铝
- 批准号:
LP210200938 - 财政年份:2022
- 资助金额:
$ 41.64万 - 项目类别:
Linkage Projects
High Purity Net Zero Alumina from Dust and Incinerator Ash.
来自灰尘和焚烧炉灰的高纯度净零氧化铝。
- 批准号:
10042795 - 财政年份:2022
- 资助金额:
$ 41.64万 - 项目类别:
Grant for R&D
Preparation of gamma-alumina having a high surface area up to the theoretical limit
具有高达理论极限的高表面积的γ-氧化铝的制备
- 批准号:
22K05276 - 财政年份:2022
- 资助金额:
$ 41.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scalable production of smelter-grade alumina from aluminous clay: a critical feedstock for aluminum production
利用铝粘土大规模生产冶炼级氧化铝:铝生产的关键原料
- 批准号:
580269-2022 - 财政年份:2022
- 资助金额:
$ 41.64万 - 项目类别:
Alliance Grants
Reducing emissions, increasing comfort: Optimizing alumina coatings on electric vehicle brake rotors
减少排放,提高舒适度:优化电动汽车制动盘上的氧化铝涂层
- 批准号:
560795-2020 - 财政年份:2022
- 资助金额:
$ 41.64万 - 项目类别:
Alliance Grants
Reducing emissions, increasing comfort: Optimizing alumina coatings on electric vehicle brake rotors
减少排放,提高舒适度:优化电动汽车制动盘上的氧化铝涂层
- 批准号:
560795-2020 - 财政年份:2021
- 资助金额:
$ 41.64万 - 项目类别:
Alliance Grants