Density Matrix Renormalization Group Studies of Strongly Correlated Systems
强相关系统的密度矩阵重整化群研究
基本信息
- 批准号:0605444
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports theoretical research on the properties of strongly interacting electron systems in low dimensions. In particular, the research will further develop algorithms associated with the density matrix renormalization group method so that this computational method can be applied to a wider variety of condensed matter systems and phenomena.One of the most exciting areas in condensed matter physics is the study of strong correlationeffects in low dimensional systems. These systems exhibit a wide range of behavior, such as hightemperature superconductivity, antiferromagnetism, striped, and spin liquid phases. They also show great promise, as fabrication techniques develop control on the nanoscale, for use in a new generation of electronic and spintronic devices. Numerical simulation techniques have become increasingly necessary to understand these systems, as the systems have strong coupling terms and competition between different types of order. The principal investigator (PI) is the creator of the density matrix renormalization group (DMRG), which is one of the most effective numerical techniques for studying strongly correlated systems. The PI and his group will apply DMRG to a variety of these systems, including spin chains, ladders, Y-junctions, both for pure spin systems and with hole doping.Understanding dynamical properties of these systems is essential for comparisons with experi-ments and for describing transport. Recently, there have been dramatic breakthroughs in the ability to simulate dynamics within DMRG. These new techniques allow for simulations in real time, with high accuracy and efficiency, even for systems far from equilibrium.With these new capabilities, the PI will study the spectral functions of a variety of chains andladder systems. In most cases, accurate, high-resolution dynamical properties for these systems have not been available previously. In addition, the PI plans to study a variety of junctions built out of chains and ladders, for which neither ground state nor dynamical simulation results have been performed. Novel techniques for simulating steady-state current flow conditions will be developed and applied to junctions. These studies are meant to pave the way for new generations of nano-scale electronic and spintronic devices built out of chains and ladders.There has also been recent major progress in the ability to simulate doped and frustrated systems in two dimensions, although the algorithms are not yet well characterized or tested. In order to develop and improve these techniques in a simpler context, they will be adapted to ladders and junctions. Subsequently, experience in improving the techniques will be applied to two dimensions. Successful application to two dimensions would have a major impact on the understanding of the cuprate superconductors and related materials.In terms of the Broader Impacts of this work, there will be significant impact in a number ofdifferent areas. One of the most important areas is the spreading of numerical and algorithm ad-vances from one area of science to another. The PI has worked and will continue to work to spread the use of the DMRG method to other fields. Most notably, the PI has initiated the use of DMRG in quantum chemistry, and several chemistry groups have now begun utilizing it. The PI is also working to improve the level of training both graduate and undergraduate students receive in computational methods. The PI has developed several new courses, both graduate and undergraduate, to introduce modern computational methods to physics students. Several of these courses have been made permanent additions to the UCI curriculum, and the PI continues to teach them. The PI is also working to encourage better scientific programming techniques in physics research, including maintaining a free downloadable highly efficient C++ matrix library.Non-Technical Abstract: This grant supports primarily computational research on the properties of strongly interacting systems of electrons in one-and two-dimensions as might be found in nano-scale devices. The behavior of electrons when they are confined in these small spaces and when they are very close to each other can lead to novel effects. This grant supports work that will develop computational techniques to describe these types of electrons. In addition to discovering and understanding these novel properties, which may lead to new devices, the computational techniques developed will find wide application in other fields of study. This is the power of developing computational methods in one field that can be applied to many other applications. Students involved in this research will receive excellent training in condensed matter physics and computational physics.
本基金支持低维强相互作用电子系统性质的理论研究。特别是,本研究将进一步开发与密度矩阵重整化群方法相关的算法,使该计算方法可以应用于更广泛的凝聚态系统和现象。凝聚态物理中最令人兴奋的领域之一是对低维系统中强相关效应的研究。这些体系表现出广泛的行为,如高温超导、反铁磁性、条纹和自旋液相。随着制造技术在纳米尺度上的控制发展,它们也显示出巨大的前景,可用于新一代电子和自旋电子设备。数值模拟技术对于理解这些系统变得越来越必要,因为这些系统具有强耦合项和不同类型顺序之间的竞争。主要研究者(PI)是密度矩阵重整化群(DMRG)的创造者,DMRG是研究强相关系统最有效的数值技术之一。PI和他的团队将把DMRG应用于各种这样的系统,包括自旋链、阶梯、y结,无论是纯自旋系统还是空穴掺杂。了解这些系统的动力学性质对于与实验比较和描述输运是必不可少的。最近,在DMRG内模拟动力学的能力方面有了巨大的突破。这些新技术允许实时模拟,具有高精度和高效率,甚至对于远离平衡的系统。有了这些新功能,PI将研究各种链和梯系统的谱函数。在大多数情况下,这些系统的精确、高分辨率动态特性以前是无法获得的。此外,PI计划研究各种由链和梯子组成的结,这些结既没有基态也没有动力学模拟结果。模拟稳态电流条件的新技术将被开发并应用于结点。这些研究旨在为新一代的纳米级电子和自旋电子设备铺平道路,这些设备是由链条和梯子组成的。最近在二维模拟掺杂和受挫系统的能力方面也取得了重大进展,尽管这些算法尚未得到很好的表征或测试。为了在更简单的环境中发展和改进这些技术,它们将适用于梯子和连接处。随后,改进技术的经验将应用于两个维度。在二维领域的成功应用将对铜超导体及相关材料的认识产生重大影响。就这项工作的更广泛影响而言,将在许多不同领域产生重大影响。最重要的领域之一是数值和算法的进步从一个科学领域传播到另一个科学领域。PI已经并将继续努力将DMRG方法的使用推广到其他领域。最值得注意的是,PI已经开始在量子化学中使用DMRG,几个化学小组现在已经开始使用它。PI还致力于提高研究生和本科生在计算方法方面的培训水平。PI为研究生和本科生开设了几门新课程,向物理专业的学生介绍现代计算方法。其中一些课程已成为UCI课程的永久补充,PI继续教授这些课程。PI还致力于在物理研究中鼓励更好的科学编程技术,包括维护一个可免费下载的高效c++矩阵库。非技术摘要:该基金主要支持在纳米级器件中可能发现的一维和二维强相互作用电子系统特性的计算研究。当电子被限制在这些小空间中时,当它们彼此非常接近时,它们的行为会导致新的效应。这项拨款支持将开发计算技术来描述这些类型的电子的工作。除了发现和理解这些可能导致新设备的新特性外,所开发的计算技术还将在其他研究领域得到广泛应用。这是在一个领域开发计算方法的力量,它可以应用于许多其他应用。参与本研究的学生将接受凝聚态物理和计算物理方面的优秀培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven White其他文献
Does sequential hepatic artery embolisation increase complications and mortality following liver resection compared to portal vein embolisation alone?
- DOI:
10.1016/j.ijsu.2012.06.212 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Abigail Vallance;Rajiv Lochan;Jeremy French;Bryon Jaques;Richard Charnley;John Rose;Steven White;Derek Manas - 通讯作者:
Derek Manas
Rigor and Relevance in Asian Management Research: Where Are We and Where Can We Go?
- DOI:
10.1023/a:1016295803623 - 发表时间:
2002-08 - 期刊:
- 影响因子:5.4
- 作者:
Steven White - 通讯作者:
Steven White
Exploring Dark Corners: An Agenda for Organizational Behavior Research in Alliance Contexts
探索黑暗角落:联盟背景下组织行为研究的议程
- DOI:
10.4135/9781452231075.n11 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
K. Leung;Steven White - 通讯作者:
Steven White
1436: Bosentan, an Endothelin Dual Receptor Antagonist, Potentiates Nitric Oxide-Mediated Erectile Response in an Aging Brown-Norway Rat Model
- DOI:
10.1016/s0022-5347(18)38661-0 - 发表时间:
2004-04-01 - 期刊:
- 影响因子:
- 作者:
Steven White;Michael Albo;Mahadevan Rajasekaran - 通讯作者:
Mahadevan Rajasekaran
Cooperation Costs, Governance Choice and Alliance Evolution
- DOI:
10.1111/j.1467-6486.2005.00548.x - 发表时间:
2005-12 - 期刊:
- 影响因子:10.5
- 作者:
Steven White - 通讯作者:
Steven White
Steven White的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven White', 18)}}的其他基金
DMRG Studies of Frustrated and Doped Systems
受阻和掺杂系统的 DMRG 研究
- 批准号:
2110041 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
DMRG Studies of Frustrated and Doped Systems
受阻和掺杂系统的 DMRG 研究
- 批准号:
1812558 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
DMRG Studies of Frustrated and Doped Systems
受阻和掺杂系统的 DMRG 研究
- 批准号:
1505406 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
DMRG studies of frustrated and doped systems
受阻和掺杂系统的 DMRG 研究
- 批准号:
1161348 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Density Matrix Renormalization Group Studies of Frustrated and Doped Systems
受阻和掺杂系统的密度矩阵重整化群研究
- 批准号:
0907500 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
DMRG Studies of Doped Antiferromagnets
掺杂反铁磁体的 DMRG 研究
- 批准号:
0311843 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Density Matrix Renormalization Group Studies of Quasi One-Dimensional Systems
准一维系统的密度矩阵重整化群研究
- 批准号:
9870930 - 财政年份:1998
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Density Matrix Renormalization Group Studies of Quasi One- Dimensional Systems
准一维系统的密度矩阵重整化群研究
- 批准号:
9509945 - 财政年份:1995
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
基于Matrix2000加速器的个性小数据在线挖掘
- 批准号:2020JJ4669
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模强激光场R-MATRIX-FLOQUET理论
- 批准号:19574020
- 批准年份:1995
- 资助金额:7.5 万元
- 项目类别:面上项目
相似海外基金
Advancement of density matrix renormalization group - Adaptation to point group symmetry
密度矩阵重整化群的进展——对点群对称性的适应
- 批准号:
17K14359 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
To the limits of the density matrix renormalization group in quantum chemistry, and beyond
量子化学中密度矩阵重整化群的极限及其他
- 批准号:
1665333 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Spin and charge currents through contacted quantum spin chains: A time-dependent density matrix renormalization group study
通过接触量子自旋链的自旋和电荷电流:时间相关的密度矩阵重正化群研究
- 批准号:
344071920 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Research Grants
Studying Phase Transitions and Entanglement Entropy in Condensed Matter Systems using Density Matrix Renormalization Group Techniques
使用密度矩阵重整化群技术研究凝聚态系统中的相变和纠缠熵
- 批准号:
480888-2015 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Numerical study of many-body localization and the associated quantum phase transitions employing the finite-temperature density-matrix-renormalization group
利用有限温度密度矩阵重正化群对多体局域化和相关量子相变进行数值研究
- 批准号:
285706534 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Research Grants
Investigation of the influence of chirality and frustration on magnetic properties of large molecule-based spin systems withDynamical Density Matrix Renormalization Group and relate methods
利用动态密度矩阵重正化群及相关方法研究手性和挫败对大分子自旋系统磁性能的影响
- 批准号:
252968872 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Research Grants
Density matrix renormalization group study on quantum systems of multiple degrees of freedom
多自由度量子系统的密度矩阵重整化群研究
- 批准号:
26400344 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Density Matrix Renormalization Group in Hybrid Momentum Space
混合动量空间中的密度矩阵重整化群
- 批准号:
229009897 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Research Units
Theory and its applications based on density matrix renormalization group for multiple-electronic-state chemical processes
基于密度矩阵重整化群的多电子态化学过程理论及其应用
- 批准号:
25288013 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Density Matrix Renormalization Group Studies of Frustrated and Doped Systems
受阻和掺杂系统的密度矩阵重整化群研究
- 批准号:
0907500 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant