Numerical study of many-body localization and the associated quantum phase transitions employing the finite-temperature density-matrix-renormalization group
利用有限温度密度矩阵重正化群对多体局域化和相关量子相变进行数值研究
基本信息
- 批准号:285706534
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to the phenomenon of Anderson-localization there cannot be a metallic wire at zero temperature; strictly speaking, all (generic one-dimensional) wires are insulators, and the associated conductance vanishes. The effect is due to an interplay of disorder and quantum-interference that ultimately localizes all propagating modes even if the disorder strength is very weak. Until recently there was a widely held belief that the wire would turn metallic at any finite temperature due to the effect of interactions. However, about a decade ago two teams presented theoretical arguments indicating that a generalized version of Anderson localization persists in Fock-space, that inhibits delocalization unless the temperature exceeds a critical value Tc. The results of subsequent work, computational and analytical, have lent full support to these claims. The existence of many-body-localization (MBL) is nowadays considered to be confirmed; experimental tests of (MBL) have been proposed and first measurements are being discussed. MBL implies the existence of classes of many-body states that represent insulators and other classes that represent metals. Each one of these classes fills a spectral window that is separated from a neighboring window by a quantum phase transition. The goal of the present proposal is to advance our knowledge and understanding of these transitions and the neighboring phases. Specifically, we propose a computational transport study of a disordered quantum wire of spin-half and spin-less fermions with short-range interactions. Main observables will be the charge, spin and energy densities and their relaxation behavior, together with the associated dynamical conductances. Our computational tool will be the density-matrix-renormalization group (DMRG) in a finite-temperature implementation. The first part of our study focuses on the relaxation dynamics of wavepackets near the phase transition. The goal is to extract from the time-dependent moments of the wave-packet distribution the relaxation time scales near and at the quantum phase transitions. When approaching the critical temperature from above, these time scales should exhibit a singular behavior (presumably with critical exponents) that we would like to study. At present, very little is known about the critical dynamics and its temperature dependency. The topic is important not only for fundamental reasons, but also because it will likely be relevant for the analysis of future experiments. Another part of the research addresses critical exponents that describe the frequency dependency of the conductance near and at the critical point. We begin by confirming very recent results about the charge-conductivity exponents. We proceed by calculating spin- and heat-exponents, which are still unknown. A comparison of exponents will provide information about the microscopic mechanism of spin- and heat flows, such as enthalpy and entropy per particle.
由于安德森定域化现象,不可能存在零温度的金属线;严格地说,所有(一般的一维)线都是绝缘体,并且相关的电导消失。这种效应是由于无序和量子干涉的相互作用,即使无序强度很弱,量子干涉最终也会使所有传播模式局部化。 直到最近,人们还普遍认为,由于相互作用的影响,金属丝在任何有限的温度下都会变成金属。然而,大约十年前,两个团队提出了理论论据,表明在福克空间中存在广义版本的安德森局域化,除非温度超过临界值Tc,否则会抑制离域。随后的计算和分析工作的结果充分支持了这些主张。多体定域(MBL)的存在现在被认为是确认;(MBL)的实验测试已经提出,第一次测量正在讨论中。 MBL意味着存在代表绝缘体的多体态类和代表金属的其他类。这些类别中的每一个都填充了一个光谱窗口,该窗口通过量子相变与相邻窗口分开。本提案的目标是促进我们对这些过渡和相邻阶段的认识和理解。具体来说,我们提出了一个计算输运研究的无序量子线自旋半和自旋少的费米子与短程相互作用。主要的观测量将是电荷,自旋和能量密度及其弛豫行为,以及相关的动态电导。我们的计算工具将是密度矩阵重整化群(DMRG)在有限温度的实现。 我们的研究的第一部分集中在相变附近的波包的弛豫动力学。我们的目标是从波包分布的含时矩中提取量子相变附近和相变处的弛豫时间尺度。当从上面接近临界温度时,这些时间尺度应该表现出我们想要研究的奇异行为(可能具有临界指数)。 目前,人们对临界动力学及其温度依赖性知之甚少。这一主题之所以重要,不仅是因为其根本原因,而且还因为它可能与未来实验的分析相关。 另一部分的研究地址的临界指数,描述的频率依赖性的电导附近和在临界点。我们开始确认最近的结果有关的电荷电导率指数。我们继续计算自旋和热指数,这仍然是未知的。 指数的比较将提供关于自旋和热流的微观机制的信息,例如每个粒子的焓和熵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ferdinand Evers其他文献
Professor Dr. Ferdinand Evers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ferdinand Evers', 18)}}的其他基金
Mesoscopic current patterns and orbital magnetism induced by dc-voltages
直流电压引起的介观电流模式和轨道磁力
- 批准号:
257888954 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Development of a functional renormalization group to treat interaction effects in strongly disordered electron systems
开发功能重正化群来处理强无序电子系统中的相互作用效应
- 批准号:
198431769 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Signatures of the individual properties of single molecules in their transport characteristics: magnetism, pi-stacking, light emission
单分子传输特性中各个属性的特征:磁性、π 堆积、光发射
- 批准号:
178708795 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Multifraktalität und Skalenverhalten an Quanten-Hall-Übergängen in normalen und supraleitenden Systemen
普通和超导系统中量子霍尔跃迁的多重分形和尺度行为
- 批准号:
5367090 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Priority Programmes
Verbesserte mikroskopische Beschreibung von "Composite Fermions" im untersten Landau Band nahe halber Füllung
改进了半填充附近最低朗道带中“复合费米子”的微观描述
- 批准号:
5246684 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
Self-consistent treatment of disorder-induced interacting criticality
疾病引起的相互作用临界性的自洽治疗
- 批准号:
430195475 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Numerical investigations of Anderson and Quantum Hall transitions:logarithmic conformal invariance, criticality without fine-tuning, multifractal dynamics
安德森和量子霍尔跃迁的数值研究:对数共形不变性、无需微调的临界性、多重分形动力学
- 批准号:
499345971 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Numerical investigations of ensembles of Boguliubov-deGennes Hamiltonians
Boguliubov-deGennes 哈密顿量系综的数值研究
- 批准号:
281653456 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
酶响应的中性粒细胞外泌体载药体系在眼眶骨缺损修复中的作用及机制研究
- 批准号:82371102
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
- 批准号:82371634
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
- 批准号:82371801
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
丁酸梭菌代谢物(如丁酸、苯乳酸)通过MYC-TYMS信号轴影响结直肠癌化疗敏感性的效应及其机制研究
- 批准号:82373139
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
- 批准号:82370976
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
α-酮戊二酸调控ACMSD介导犬尿氨酸通路代谢重编程在年龄相关性听力损失中的作用及机制研究
- 批准号:82371150
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Mathematical study of quantum many-body dynamics
量子多体动力学的数学研究
- 批准号:
23H01093 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of high performance and accuracy eigenvalue solvers for quantum many-body systems
量子多体系统高性能、高精度特征值求解器研究
- 批准号:
22K12052 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control and study of molecular dynamics in many-body quantum systems
多体量子系统中分子动力学的控制与研究
- 批准号:
RGPIN-2019-04210 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Control and study of molecular dynamics in many-body quantum systems
多体量子系统中分子动力学的控制与研究
- 批准号:
RGPIN-2019-04210 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Theoretical study of disorder-free localization in artificial quantum many-body systems
人工量子多体系统无序定位的理论研究
- 批准号:
21K13849 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
pleioR: A powerful and fast test and software for the study of pleiotropy in systems involving many traits with biobank-sized data
pleioR:一个强大而快速的测试和软件,用于研究涉及生物库大小数据的许多性状的系统中的多效性
- 批准号:
10187158 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Experimental study on open quantum many-body systems using strongly correlated cold atoms
利用强关联冷原子的开放量子多体系统实验研究
- 批准号:
21H01014 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical study on control and observation of quantum states by many-body effects using mesoscopic complexes
利用介观配合物进行多体效应控制和观察量子态的理论研究
- 批准号:
21K03415 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
pleioR: A powerful and fast test and software for the study of pleiotropy in systems involving many traits with biobank-sized data
pleioR:一个强大而快速的测试和软件,用于研究涉及生物库大小数据的许多性状的系统中的多效性
- 批准号:
10424541 - 财政年份:2021
- 资助金额:
-- - 项目类别: