Modeling Actuation and Shape Selection in Soft Materials

软材料中的驱动建模和形状选择

基本信息

  • 批准号:
    0605889
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-15 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

This award supports theoretical research, both analytical and computational, on a range of problems that span fundamental physics to industrial applications. The research focus is on soft materials as might be found in rubbers or naturally in biological systems, e.g., muscles. The research will look at how certain types of rubber-like materials respond to external stimuli such as electric currents. Another topic of research is how biomolecules and simple biological structures assemble to form more complex structures. The research will involve students and postdoctoral research associates.The principal investigators will carry out theoretical analysis and computer simulation studies of two problems related to shape evolution in soft materials. First, they focus on the actuation of liquid crystal elastomers, which change their shape in response to changes in temperature, applied electric fields, and optical illumination. These materials can bend as well as lengthen and contract, and have the potential to be used as "artificial muscles" for robotics, MEMS, and microfluidics applications. Second, the principal investigators will investigate self-assembled microstructures of amphiphilic molecules, such as lipid tubules and helical ribbons, which spontaneously form in complex shapes out of solution. These structures have applications in microencapsulation and controlled release, and can also serve as templates to form metallic microstructures used in microwave-absorbing composite materials. This type of self-assembly is also observed in biological materials, such as bile, both in vivo and in vitro.In both liquid crystal elastomers and in self-assembly of tubules and ribbons, materials of interestexhibit unusual combinations of ferroelasticity, ferroelectricity, and/or flexoelectricity. Mesogenic ordering of the material and chirality/chiral symmetry-breaking also play important roles. Each unique combination of material properties creates new opportunities for technology development and new challenges for both fundamental theory and materials engineering.Intellectual merit: The primary goals of the project are (1) to make progress with thedevelopment of fundamental theory of these materials, and (2) to apply that theory to create acontinuum-scale finite element simulation tool to model the dynamics of these materials at thedevice level and on long time scales. This project is thus intended to bridge the gap fromfundamental soft condensed matter theory to materials engineering and even product design. Thenew simulation tool represents a novel application of finite element elastodynamics to study shape changes caused by evolving mesogenic order in soft materials. The principal investigators have a strong record of fruitful collaboration and bring complementary expertise in analytical calculations and computer simulation to the work. Kent State University's Liquid Crystal Institute is a center of excellence in the study of soft materials and provides an ideal location for this research.Broader impacts: The project will involve the active participation of a graduate student and apostdoctoral fellow, with additional participation of students provided by the Chemical Physics Interdisciplinary Program at Kent State University. Both investigators have an exceptional track record in recruiting and working with female and minority students, and already have female and minority students working in their group at Kent State University. The investigators will participate in the Liquid Crystal Institute's ongoing community outreach activities, including presentations at local K-12 schools and hosting visiting student groups. The soft materials studied here are promising for a wide range of technological applications mentioned above. Through the Liquid Crystal Institute's well-established Industrial Partnership Program, we plan to transition the developed simulation tools and technological concepts for commercial use.
该奖项支持对从基础物理到工业应用的一系列问题的分析和计算理论研究。 研究重点是橡胶中或天然存在于生物系统(例如肌肉)中的软材料。 该研究将着眼于某些类型的类橡胶材料如何响应电流等外部刺激。 另一个研究主题是生物分子和简单的生物结构如何组装形成更复杂的结构。 该研究将由学生和博士后研究员参与。主要研究人员将对与软材料形状演化相关的两个问题进行理论分析和计算机模拟研究。首先,他们专注于液晶弹性体的驱动,液晶弹性体会根据温度、施加的电场和光学照明的变化而改变其形状。这些材料可以弯曲、伸长和收缩,有潜力用作机器人、MEMS 和微流体应用的“人造肌肉”。其次,主要研究人员将研究两亲分子的自组装微观结构,例如脂管和螺旋带,它们在溶液中自发形成复杂的形状。这些结构在微胶囊化和控制释放方面具有应用,并且还可以作为模板来形成用于微波吸收复合材料的金属微结构。这种类型的自组装在体内和体外的生物材料(例如胆汁)中也可以观察到。在液晶弹性体以及管和带的自组装中,感兴趣的材料表现出铁弹性、铁电性和/或挠电性的不寻常组合。材料的介晶有序性和手性/手性对称性破缺也发挥着重要作用。材料特性的每种独特组合都为技术发展创造了新的机遇,也为基础理论和材料工程带来了新的挑战。智力价值:该项目的主要目标是(1)在这些材料的基础理论的发展方面取得进展,以及(2)应用该理论创建连续尺度有限元模拟工具,以在设备水平和长期尺度上对这些材料的动力学进行建模。因此,该项目旨在弥合从基础软凝聚态理论到材料工程甚至产品设计的差距。新的模拟工具代表了有限元弹性动力学的一种新颖应用,用于研究软材料中介晶有序演化引起的形状变化。主要研究人员拥有卓有成效的合作记录,并将分析计算和计算机模拟方面的互补专业知识带入工作中。肯特州立大学的液晶研究所是软材料研究的卓越中心,为这项研究提供了理想的场所。更广泛的影响:该项目将有一名研究生和博士后研究员的积极参与,另外还有肯特州立大学化学物理跨学科项目提供的学生的参与。 两位调查员在招募女性和少数族裔学生以及与女性和少数族裔学生合作方面都有着出色的记录,并且已经有女性和少数族裔学生在肯特州立大学的小组中工作。调查人员将参加液晶研究所正在进行的社区外展活动,包括在当地 K-12 学校进行演讲并接待来访的学生团体。这里研究的软材料有望用于上述广泛的技术应用。通过液晶研究所完善的工业合作伙伴计划,我们计划将开发的模拟工具和技术概念转化为商业用途。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Selinger其他文献

Robin Selinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Selinger', 18)}}的其他基金

Collaborative Research: Microfabrication and Self-Assembly of Shape-Changing Hydrogels with Chromonic Liquid Crystalline Order
合作研究:彩色液晶有序变形水凝胶的微加工和自组装
  • 批准号:
    1663041
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Programmable and Emergent Structures in Soft Matter: Chirality, Polarity, and Auto-Origami
软物质中的可编程和紧急结构:手性、极性和自动折纸
  • 批准号:
    1409658
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Topological Defects, Curved Geometries, and Shape Evolution in Soft Matter
软物质中的拓扑缺陷、弯曲几何形状和形状演化
  • 批准号:
    1106014
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Physics of Dislocation Patterning and Size Effects in Plasticity
位错图案物理和可塑性尺寸效应
  • 批准号:
    0116090
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Evolution of Dislocation Microstructures
职业:位错微结构的演化
  • 批准号:
    9702234
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
3D micro-bioprinting: acoustic actuation to shape single-cell organization
3D 微生物打印:声学驱动塑造单细胞组织
  • 批准号:
    DE200100909
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Early Career Researcher Award
Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
EAPSI: Material property character mapping of shape memory alloy to improve actuation frequency output
EAPSI:形状记忆合金的材料特性特征映射,以提高驱动频率输出
  • 批准号:
    1414936
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship Award
On the effect of thermo-mechanical and chemo-mechanical coupling on the structural and functional properties of shape memory polymers (SMPs) II: Effect of superimposed mechanical stresses during chemically affected actuation and exploring the strong coupl
热机械和化学机械耦合对形状记忆聚合物(SMP)结构和功能特性的影响II:化学影响驱动过程中叠加机械应力的影响并探索强耦合
  • 批准号:
    257549561
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Priority Programmes
Shape memory alloy actuation and control
形状记忆合金驱动与控制
  • 批准号:
    454922-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
Electrochemical actuation of shape memory alloy artificial muscles
形状记忆合金人工肌肉的电化学驱动
  • 批准号:
    373225-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了