Scattering and Non-Equilbrium Transport in Quantum Importity Systems
量子导入系统中的散射和非平衡输运
基本信息
- 批准号:0605941
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractThis grant supports theoretical research involving the influence of impurities on the properties of systems such as quantum dots and nanoelectronics. In particular, the properties of these systems under nonequlibrium conditions will be studied. Most past work has been on equilibrium systems. However, nonequilibrium conditions are more realistic in actual applications. The project will involve the participation of graduate students and postdoctoral researchers.Technical AbstractIntellectual Merit: The study of non-equilibrium quantum impurity systems lies at theintersection of mesoscopic and strongly correlated physics. The dramatic recent advances in experimental techniques have allowed for the realization of impurity models in nanoscale devices such as quantum dots where quantum fluctuations are greatly enhanced due to low dimensionality. Describing the interplay between non-equilibrium conditions and strong correlations is a formidable intellectual challenge. This proposal addresses the issue of non-equilibrium steady states, a small corner of the more general problem . A new conceptual framework is proposed that allows for exact and explicit computations of the nonequilibrium steady state properties of quantum impurity models. In particular, it allows for the calculation of many experimentally measurable quantities such as the current across the dot and the nonequilibrium impurity density of states. The proposed framework also allows for the exact computation of scattering properties in quantum impurity models and consequently has strong implications for explaining such physical phenomena as decoherence and anomalous energy relaxation in metallic wires.Broader Impact: Non-equilibrium phenomena are ubiquitous in nature, and yet relativelypoorly understood. This stands in marked difference to equilibrium phenomena where a universal framework has been provided by Boltzmann more than a century ago. Steady states are the simplest among the great variety of non-equilibrium phenomena. This work will forge conceptual and practical tools to provide an exact description of steady-state dynamics in quantum impurity models. In the past, exact solutions have played an important role in increasing our understanding of equilibrium statistical mechanics. It is expected, therefore, that the proposed research will help point the way towards a general formulation of nonequilibrium steady-states by providing exact solutions for a set of models with important experimental realization. On a more practical level, the proposed research will help clarify the limits of applicability of nanodevices operating under temperature and voltage gradients. This has direct practical consequence for modern quantum electronics.The following projects will be studied:. Quantum impurities out of equilibrium: A new conceptual framework is proposedthat allows for the exact computation of the differential conductance and non-equilibriumdensity of states for a quantum dot described by the non-equilibrium Kondo or the Anderson models at all temperatures and bias voltages.. Scattering properties of quantum impurity systems: Exact computation of elastic and inelastic scattering amplitudes of an electron off a magnetic impurity is proposed.Precise predictions, valid for all temperatures and energy scales, will be available to describe: (i) the dephasing time as measured in experiments on magnetoresistance, and (ii) the anomalous energy relaxation rate observed in metallic wires under large bias voltage.. Extended 1D systems out of equilibrium: The development of a conceptual frameworkto describe some extended one-dimensional quantum systems out of equilibrium isproposed.
本基金支持涉及杂质对量子点和纳米电子学等系统特性影响的理论研究。特别地,我们将研究这些系统在非平衡条件下的性质。过去的大部分工作都是关于平衡系统的。然而,在实际应用中,非平衡条件更为现实。该项目将涉及研究生和博士后研究人员的参与。技术摘要智力优势:非平衡量子杂质体系的研究处于介观物理学和强相关物理学的交叉领域。最近实验技术的巨大进步使得在纳米级器件(如量子点)中实现杂质模型成为可能,其中量子涨落由于低维而大大增强。描述非均衡条件和强相关性之间的相互作用是一项艰巨的智力挑战。这一建议解决了非平衡稳态问题,这是更普遍问题的一个小角落。提出了一个新的概念框架,允许精确和显式计算量子杂质模型的非平衡稳态特性。特别是,它允许计算许多实验可测量的量,如流过点的电流和状态的非平衡杂质密度。所提出的框架也允许在量子杂质模型中精确计算散射特性,因此对解释金属丝中的退相干和异常能量松弛等物理现象具有重要意义。更广泛的影响:非平衡现象在自然界中无处不在,但人们对其了解相对较少。这与一个多世纪前玻尔兹曼提供的一个普遍框架的平衡现象有明显的不同。在各种各样的非平衡现象中,稳态是最简单的。这项工作将锻造概念和实用工具,以提供量子杂质模型中稳态动力学的精确描述。在过去,精确解在增加我们对平衡统计力学的理解方面发挥了重要作用。因此,期望所提出的研究将通过提供具有重要实验实现的一组模型的精确解,帮助指出非平衡稳态的一般公式。在更实际的层面上,提出的研究将有助于澄清纳米器件在温度和电压梯度下工作的适用性限制。这对现代量子电子学有直接的实际影响。将研究以下项目:。不平衡的量子杂质:提出了一个新的概念框架,允许在所有温度和偏置电压下由非平衡Kondo或Anderson模型描述的量子点的微分电导和非平衡态密度的精确计算。量子杂质系统的散射特性:提出了电子对磁性杂质的弹性和非弹性散射振幅的精确计算。精确的预测,适用于所有温度和能量尺度,将可用来描述:(i)在磁电阻实验中测量的脱相时间,以及(ii)在大偏置电压下金属导线中观察到的异常能量弛豫率。非平衡扩展一维系统:提出了一个描述非平衡扩展一维量子系统的概念框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natan Andrei其他文献
Edge Spin fractionalization in one-dimensional spin-$S$ quantum antiferromagnets
一维自旋$S$量子反铁磁体中的边缘自旋分裂
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pradip Kattel;Yicheng Tang;J. H. Pixley;Natan Andrei - 通讯作者:
Natan Andrei
Optical Conductivity and Pseudo-Momentum Conservation in Anisotropic Fermi Liquids
- DOI:
10.1023/a:1013879632673 - 发表时间:
2002-02-01 - 期刊:
- 影响因子:1.400
- 作者:
Achim Rosch;Natan Andrei - 通讯作者:
Natan Andrei
Exact results on the two-channel Anderson impurity model: single-electron Green's function and resistivity
- DOI:
10.1016/j.physb.2005.01.215 - 发表时间:
2005-04-30 - 期刊:
- 影响因子:
- 作者:
Henrik Johannesson;Natan Andrei;Carlos J. Bolech - 通讯作者:
Carlos J. Bolech
Natan Andrei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natan Andrei', 18)}}的其他基金
Quench Dynamics of Low Dimensional Quantum Many Body Systems
低维量子多体系统的淬灭动力学
- 批准号:
1410583 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Scattering Theory and Non-Equilibrium Transport in Quantum
散射理论和量子非平衡输运
- 批准号:
1006684 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似国自然基金
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
- 批准号:LQ21C060001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 27万 - 项目类别:
Studentship
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
- 批准号:
2347575 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335761 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Non-volatile memory devices based on sliding ferroelectricity
职业:基于滑动铁电的非易失性存储器件
- 批准号:
2339093 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
- 批准号:
24K14025 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of dominant negative ACTA2 variants : a zebrafish model for non-syndromic aortic aneurysms
显性失活 ACTA2 变异的表征:非综合征性主动脉瘤的斑马鱼模型
- 批准号:
24K18891 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Active Integrated Antenna for Intelligent Arrays in 6G Non-Terrestrial Networks
用于 6G 非地面网络智能阵列的有源集成天线
- 批准号:
EP/Y003144/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Research Grant














{{item.name}}会员




