Collaborative Research: Topological Fluid Mechanics of Stirring

合作研究:搅拌拓扑流体力学

基本信息

  • 批准号:
    0607606
  • 负责人:
  • 金额:
    $ 21.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2007-04-30
  • 项目状态:
    已结题

项目摘要

StremlerDMS-0607606BoylandDMS-0604570 The broad objectives of this work are to develop the theoryof topological chaos and to advance the application of thistheory to fluid stirring. The main focus is on fluid systems forwhich a unique top-level periodic orbit of pseudo-Anosov type hasbeen "built in." This work is accomplished using an integratedprogram of theoretical, numerical, and experimental research. Inparticular, the investigators (1) advance the rigorousmathematical theory underlying topological chaos; (2) use thetheory to develop an understanding of the fundamental mechanismsof mixing in several canonical fluid flows of practical interest;and (3) leverage these developments to advance current laminarmixing technology. The mathematical/theoretical andnumerical/experimental components of this project are mutuallysupporting. The theory provides ideas and a basic framework forthe design and analysis of fluid mixing, while the fluidapplications provide evidence for or against the posedconjectures and suggest ideas for additional development of thetheory. The intellectual merit of this work includes itsextensions of the Thurston-Nielsen theory, its contributions tothe fundamental understanding of fluid stirring and the role oftopological methods in global predictions of chaos, and itsdetailed analysis of fluid systems of interest for practicalmixing enhancement. Laminar fluid flow systems are at the center of numerousmajor advances in medical, biological, chemical, and materialprocessing applications that are important for improving humanhealth, advancing scientific discovery, and maintaining nationalsecurity. Fluid mixing is known to play a significant role inthese applications, and mixing enhancement is most often achievedthrough efficient stirring. Further advances in laminar mixingenhancement are limited in part by the tools used to model,analyze, and predict efficient stirring in laminar flows. Atopological method based on a deep mathematical theory due toThurston and Nielsen has recently been applied to fluid stirringenhancement by the investigators and others with quite dramaticresults. The mathematical theory, when properly applied,provides a means to "design for chaos" predictively. The broaderimpacts of this work include promoting teaching and learning atthe undergraduate and graduate levels, seeking to broaden theparticipation of underrepresented groups in research, enhancinginteraction between the engineering and mathematics communities,and benefiting society by developing the techniques for mixingenhancement in laminar flow.
DMS-0607606Boyland DMS-0604570这项工作的主要目标是发展拓扑混沌理论,并推动该理论在流体搅拌中的应用。主要的焦点是流体系统,其中一个独特的顶层周期轨道的伪阿诺索夫类型已经“内置”。这项工作是通过一个理论、数值和实验研究相结合的程序来完成的。特别是,研究人员(1)提出了拓扑混沌背后的严格数学理论;(2)使用该理论来发展对几种具有实际意义的正则流体流动中混合的基本机制的理解;以及(3)利用这些发展来推进当前的分层混合技术。该项目的数学/理论和数值/实验部分是相互支持的。该理论为流体混合的设计和分析提供了思路和基本框架,而流体应用提供了支持或反对假设的证据,并为该理论的进一步发展提供了建议。这项工作的学术价值包括它对瑟斯顿-尼尔森理论的扩展,它对流体搅拌的基本理解的贡献,以及拓扑方法在全局混沌预测中的作用,以及它对实际混合强化感兴趣的流体系统的详细分析。层流流体系统是医学、生物、化学和材料加工应用领域众多重大进展的核心,这些应用对改善人类健康、推进科学发现和维护国家安全具有重要意义。众所周知,流体混合在这些应用中扮演着重要的角色,而强化混合通常是通过有效搅拌来实现的。层流混合强化方面的进一步进展在一定程度上受到用于模拟、分析和预测层流中有效搅拌的工具的限制。一种基于瑟斯顿和尼尔森的深刻数学理论的拓扑学方法最近被研究人员和其他人应用于流体搅拌强化,取得了相当引人注目的结果。当恰当地应用数学理论时,它提供了一种预测性地“为混沌设计”的方法。这项工作的广泛影响包括促进本科生和研究生的教与学,寻求扩大未被充分代表的群体对研究的参与,加强工程界和数学界之间的互动,并通过开发层流混合强化技术来造福社会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Stremler其他文献

Hassan Aref (1950–2011)
  • DOI:
    10.1134/s1560354711060086
  • 发表时间:
    2011-12-29
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Alexey V. Borisov;Viatcheslav V. Meleshko;Mark Stremler;GertJan van Heijst
  • 通讯作者:
    GertJan van Heijst

Mark Stremler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Stremler', 18)}}的其他基金

I-Corps: Ferrofluid-Based Passive Cooling System for Electronic Devices
I-Corps:用于电子设备的基于铁磁流体的被动冷却系统
  • 批准号:
    1359249
  • 财政年份:
    2013
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
IGERT: MultiScale Transport in Environmental and Physiological Systems (MultiSTEPS)
IGERT:环境和生理系统中的多尺度传输 (MultiSTEPS)
  • 批准号:
    0966125
  • 财政年份:
    2010
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topological Fluid Mechanics of Stirring
合作研究:搅拌拓扑流体力学
  • 批准号:
    0701126
  • 财政年份:
    2006
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
SGER: Inviscid Models of Two-Dimensional Vortex Wakes with Continuous Vorticity
SGER:具有连续涡度的二维涡流尾流的无粘模型
  • 批准号:
    0442845
  • 财政年份:
    2004
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310356
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310412
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
  • 批准号:
    2304207
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: HNDS-R: Stepping out of flatland: Complex networks, topological data analysis, and the progress of science
合作研究:RUI:HNDS-R:走出平地:复杂网络、拓扑数据分析和科学进步
  • 批准号:
    2318170
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了