Collaborative Research: Floer Theory and Topological Entropy

合作研究:弗洛尔理论和拓扑熵

基本信息

项目摘要

Hamiltonian systems constitute a broad class of dynamical systems where energy dissipation can be neglected. For example, the planetary motion in celestial mechanics, the flow of an incompressible ideal fluid and the motion of a charged particle in an electro-magnetic field are usually treated as Hamiltonian dynamical systems. Topological entropy is an important invariant of a dynamical system, measuring its complexity and originating in physics and information theory. The PIs will develop new methods and tools to study topological entropy of Hamiltonian dynamical systems, utilizing ideas from topological data analysis. Conversely, this research has a potential to contribute to the field of topological data analysis and applied questions including image and pattern recognition. The work involves integration of research, education and training young scientists. It will have impact in the areas of higher education and dissemination of knowledge, within the field and to a wider scientific community, and it will increase participation of individuals from underrepresented groups in mathematics.On a more technical level, the main theme of the project is the interaction between Floer theory and symplectic topology on one side and Hamiltonian dynamics and, in particular, topological entropy on the other. The PIs will study topological entropy of compactly supported Hamiltonian diffeomorphisms and certain Reeb flows from the perspective of Floer theory. The project builds on the PIs’ recent work and focuses on barcode entropy introduced by the PIs, which is a Floer theoretic counterpart of topological entropy and is closely related to it. The key new and distinguishing feature of the PIs’ approach to Floer theoretic aspects of topological entropy is that barcode entropy is based on neither exponential growth of Floer homology – there is no growth in the Hamiltonian setting – nor on topological properties of the map such as the growth of free homotopy classes of periodic orbits. The PIs will also study the behavior of the gamma-norm under iterations in the Hamiltonian or contact setting. Most of the projects will require developing new techniques applicable to other questions, and interactions with areas outside symplectic geometry and dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
哈密顿系统构成了能量耗散可以忽略不计的一类动力系统。例如,天体力学中的行星运动、不可压缩理想流体的流动、带电粒子在电磁场中的运动等,通常都被视为哈密顿动力系统。拓扑熵是动力系统的一个重要的不变量,是衡量动力系统复杂性的重要指标,它起源于物理学和信息论。PI将开发新的方法和工具来研究哈密顿动力系统的拓扑熵,利用拓扑数据分析的思想。相反,这项研究有可能有助于拓扑数据分析领域和应用问题,包括图像和模式识别。这项工作涉及研究、教育和培训青年科学家的一体化。它将在高等教育和知识传播领域产生影响,在该领域内和更广泛的科学界,它将增加来自代表性不足的群体的个人在数学中的参与。在更技术层面上,该项目的主题是Floer理论和辛拓扑之间的相互作用,一方面是Hamilton动力学,特别是拓扑熵。PI将从Floer理论的角度研究紧支撑Hamilton同构和某些Reeb流的拓扑熵。该项目建立在PI最近的工作基础上,重点关注PI引入的条形码熵,这是拓扑熵的Floer理论对应物,并且与之密切相关。PI对拓扑熵的Floer理论方面的方法的关键新的和显著的特征是条形码熵既不基于Floer同调的指数增长-在Hamilton设置中没有增长-也不对拓扑性质的地图,如增长的自由同伦类的周期轨道。PI还将研究Hamilton或接触设置中迭代下的伽马范数的行为。大多数项目将需要开发适用于其他问题的新技术,以及与辛几何和动力学之外领域的相互作用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Basak Gurel其他文献

Basak Gurel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Basak Gurel', 18)}}的其他基金

CAREER: Periodic Orbits of Hamiltonian Diffeomorphisms and Reeb Flows
职业:哈密顿微分同胚和 Reeb 流的周期轨道
  • 批准号:
    1454342
  • 财政年份:
    2015
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Symplectic topology of Hamiltonian systems with infinitely many periodic orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    1414685
  • 财政年份:
    2014
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Symplectic topology of Hamiltonian systems with infinitely many periodic orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    1207680
  • 财政年份:
    2012
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Symplectic Topology of Hamiltonian Systems with Infinitely Many Periodic Orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    0906204
  • 财政年份:
    2009
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
  • 批准号:
    2304206
  • 财政年份:
    2023
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Research on applications of Floer theory and persistence modules
Florer理论和持久性模块的应用研究
  • 批准号:
    18J00335
  • 财政年份:
    2018
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
FRG: Collaborative Research: Floer homotopy theory
FRG:合作研究:弗洛尔同伦理论
  • 批准号:
    1560699
  • 财政年份:
    2016
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Floer homotopy theory
FRG:合作研究:弗洛尔同伦理论
  • 批准号:
    1564172
  • 财政年份:
    2016
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research : Floer homotopy theory
FRG:合作研究:弗洛尔同伦理论
  • 批准号:
    1564289
  • 财政年份:
    2016
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Floer Homotopy Theory
FRG:合作研究:弗洛尔同伦理论
  • 批准号:
    1563615
  • 财政年份:
    2016
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Floer Homotopy Theory
FRG:合作研究:弗洛尔同伦理论
  • 批准号:
    1560783
  • 财政年份:
    2016
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Research on the intersection of a pair of homogeneous Lagrangian submanifolds and Floer homology
一对齐次拉格朗日子流形的交集与Floer同调研究
  • 批准号:
    24740049
  • 财政年份:
    2012
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on intersection of a pair of Lagrangian submanifolds via Floer theory
基于Floer理论的一对拉格朗日子流形的交集研究
  • 批准号:
    22740043
  • 财政年份:
    2010
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on Floer theory of singular Lagrangian submanifolds
奇异拉格朗日子流形Floer理论研究
  • 批准号:
    19740040
  • 财政年份:
    2007
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了