Conference Proposal: CRM Theme Semester on Combinatorial Optimization (June 2006 - December 2006)
会议提案:组合优化 CRM 主题学期(2006 年 6 月 - 2006 年 12 月)
基本信息
- 批准号:0607951
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-01 至 2007-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Centre de Recherches Mathematiques in Montreal (CRM) is organizing aTheme Semester on Combinatorial Optimization that will include a NATOAdvanced Study Institute and five workshops. Broadly speaking, combinatorial optimization is the study of optimization problems in which there are a finite (but usually very large) number of potentialsolutions, also called feasible solutions. These are not enumerated but rather defined implicitly by constraints, i.e., linear ornonlinear relations. For instance, the famous traveling salesman problem (TSP) consists of selecting the least expensive tour of a given set oflocations, and the minimum spanning tree problem (MST) of selecting theleast expensive network connecting given sites. Combinatorial optimization has been applied to many fields of huge practical import, such as transport scheduling, telecommunications planning and circuit design (where problems similar to the TSP, among others, must be solved routinely). Since most combinatorial optimization problems are verydifficult to solve, researchers have, on the one hand, improved thetime-consuming algorithms that compute optimal solutions of difficultproblems such as the TSP, and on the other, designed efficientalgorithms that compute near-optimal solutions (also called heuristicsolutions). Two of the workshops will address the design of such algorithms (from different angles). The three others will address the computation of polyhedra related to optimization, the use of optimization in data mining, and the design of computer and communication networks such as the Internet.
蒙特利尔数学研究中心 (CRM) 正在组织一个关于组合优化的主题学期,其中包括一个北约高级研究所和五个研讨会。从广义上讲,组合优化是对优化问题的研究,其中存在有限(但通常非常大)数量的潜在解决方案,也称为可行解决方案。这些不是枚举的,而是通过约束隐式定义的,即线性或非线性关系。例如,著名的旅行商问题(TSP)包括选择一组给定位置的最便宜的旅行,以及选择连接给定站点的最便宜的网络的最小生成树问题(MST)。组合优化已应用于许多具有巨大实际意义的领域,例如传输调度、电信规划和电路设计(其中类似于TSP的问题必须常规解决)。由于大多数组合优化问题都很难解决,研究人员一方面改进了计算 TSP 等困难问题最优解的耗时算法,另一方面设计了计算近最优解(也称为启发式解)的高效算法。其中两个研讨会将讨论此类算法的设计(从不同角度)。另外三个将讨论与优化相关的多面体计算、优化在数据挖掘中的应用以及计算机和通信网络(例如互联网)的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michel Goemans其他文献
Michel Goemans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michel Goemans', 18)}}的其他基金
AF: Small: New Approaches to Fundamental Problems in Network Design
AF:小:网络设计中基本问题的新方法
- 批准号:
1115849 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Polyhedral Techniques for the Design of Approximation Algorithms
近似算法设计的多面体技术
- 批准号:
0829878 - 财政年份:2008
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Design and Analysis of Algorithms - New Paradigms, Methodologies and Applications
算法的设计和分析——新范式、方法论和应用
- 批准号:
0515221 - 财政年份:2005
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Design of Improved Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的改进逼近算法设计
- 批准号:
0098018 - 财政年份:2001
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Career: Approximation Algorithms: Methodology and Applications
职业:近似算法:方法论和应用
- 批准号:
9623859 - 财政年份:1996
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
- 批准号:
9302476 - 财政年份:1993
- 资助金额:
$ 3万 - 项目类别:
Continuing grant
相似海外基金
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
- 批准号:
2413980 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
- 批准号:
2341300 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
- 批准号:
ES/Y003411/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Conference: Proposal for Student Participation Grant and Distinguished Speakers in Health Community
会议:学生参与补助金和健康社区杰出演讲者的提案
- 批准号:
2313255 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Equipment: Woods Hole Oceanographic Institution 2023 OI Proposal
设备:伍兹霍尔海洋研究所 2023 年 OI 提案
- 批准号:
2313654 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant