A Synthesis of Community Data and Modeling for Advancing River Basin Science: The Evolving Susquehanna River Basin Experiment
促进流域科学发展的社区数据和建模的综合:不断发展的萨斯奎哈纳河流域实验
基本信息
- 批准号:0609791
- 负责人:
- 金额:$ 17.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-12-01 至 2009-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0609791DuffyHydrologic Observatory: The Susquehanna River Basin (SRB) is the largest tributaryto the Chesapeake Bay. Without this flow the estuary could not sustain its extraordinarydiversity and productivity of aquatic life. The dilemma of our water-resource legacy is to balancethe competing societal and environmental needs placed on the Susquehanna's freshwaterresources. In 2002, Penn State took the leadership role in forming a consortium of scientists,policy makers, and stakeholders drawn from 30 universities as well as from federal and stateagencies to design and implement the Susquehanna River Basin Hydrologic Observing System(SRBHOS) (www.srbhos.psu.edu). SRBHOS has been initiated to address "How do humansand climate impact the sustainability of the water resources within large river basins? What roledo large rivers play in the global climate system?".Overview of Research: This proposed research plan will advance the SRBHOSscience agenda by investigating the three research themes: (1) Assessment of the significanceof the regional water table, its role as a lower boundary condition to soil moisture, and theimpact of water table status on hydrologic extremes (floods, droughts). We propose to developthe concept of a subsurface boundary layer (SBL), which we define as the depth beneath theland surface for which the local atmosphere and land-surface processes will affect the local flowof groundwater to streams. An algorithm will be developed to map the SBL using the SRBHOSdigital data. (2) Integrated models that include vegetation water and energy dynamics willimprove hydrologic forecasts at the basin-scale and are critical to resolving the relativeimportance of recharge to the shallow groundwater table and transpiration of soil moisture (3)Macropores have a significant affect on the hydroclimatic performance of watersheds duringwet and dry cycles. We intend to develop new parameterization strategies to correct theregional soils database for macropore flow based on the Shale Hills testbed. Currently soilclassification only considers "matrix" properties (conductivity and water holding capacity).Finally, this research will attempt to demonstrate how a unification of modeling, existing digitaldata, and new data collection strategies will advance our understanding of river basin waterresources and support the design of hydrologic observatories.Intellectual Merit: The present proposal will unify early SRBHOS science efforts andaddress how a physical model and a-priori data can be used to promote scientific collaborationsthat: (1) will aid the SRBHOS community in formulating hypotheses and potential scenarios forhydrologic change within the basin; (2) will promote the development of new data-drivenalgorithms that enhance our ability to represent and predict water cycle dynamics; and (3) thatwill support a scientifically-based design for the future observatory's sensor network. Addressingthese issues will aid SRBHOS scientists in assessing climate and human feedbacks acrossmultiple scales as well as physiographical and ecological conditions. The tools developed inthis research will contribute to improving our understanding of the roles of terrain, ecology, andgeology in partitioning water and energy across the complex environmental systems that makeup the SRB.Broader Impacts: This proposed research will be disseminated broadly to theacademic, state, and federal SRBHOS partners through a Susquehanna Data and ModelingSymposium, which will be organized by the PIs in conjunction with the Chesapeake ResearchConsortium. Funds requested in this proposal for the symposium will be leveraged with otherssources of funding to maximize our ability to invite national leaders in river basin modeling anddata systems to review the proposed tools developed in this research as well as contribute theirown expertise and tools to the SRBHOS community modeling effort. All software and dataresources developed in this project are dedicated to the "open source" framework and sharedthrough the Chesapeake Community Modeling Program. Additionally, this research effort willexploit basin-wide collaborations such as the currently pending Susquehanna REU to promoteundergraduate education and to recruit demographically and geographically diverse studentscurrently underrepresented in hydrologic science.
[6097991]杜菲水文观测站:萨斯奎哈纳河流域(SRB)是切萨皮克湾最大的支流。没有这种水流,河口就无法维持其非凡的多样性和水生生物的生产力。我们的水资源遗产的困境是平衡对萨斯奎哈纳淡水资源的竞争社会和环境需求。2002年,宾夕法尼亚州立大学牵头组建了一个由来自30所大学以及联邦和州机构的科学家、决策者和利益相关者组成的联盟,设计和实施萨斯克汉纳河流域水文观测系统(SRBHOS) (www.srbhos.psu.edu)。SRBHOS的启动是为了解决“人类和气候如何影响大型流域内水资源的可持续性?”大河在全球气候系统中扮演什么角色?”本研究计划将通过三个研究主题来推进SRBHOSscience议程:(1)区域地下水位的重要性评估,其作为土壤湿度的下边界条件的作用,以及地下水位状况对水文极端事件(洪水,干旱)的影响。我们建议发展地下边界层(SBL)的概念,我们将其定义为地表以下的深度,在该深度,当地大气和地面过程将影响当地地下水流向溪流。将开发一种算法,利用srbhos数字数据绘制SBL。(2)包括植被水分和能量动态的综合模型将改善流域尺度的水文预报,对于解决浅层地下水位补给和土壤水分蒸腾的相对重要性至关重要。(3)大孔隙在干湿循环过程中对流域的水文气候表现有显著影响。我们打算开发新的参数化策略来校正基于页岩山试验台的大孔隙流动区域土壤数据库。目前土壤分类只考虑“基质”性质(电导率和持水量)。最后,本研究将尝试展示建模、现有数字数据和新数据收集策略的统一如何促进我们对流域水资源的理解,并支持水文观测站的设计。知识价值:本提案将统一SRBHOS早期的科学努力,并解决如何使用物理模型和先验数据来促进科学合作的问题:(1)将帮助SRBHOS社区制定流域内水文变化的假设和潜在情景;(2)将促进新的数据驱动算法的发展,增强我们表示和预测水循环动力学的能力;(3)这将为未来天文台传感器网络的科学设计提供支持。解决这些问题将有助于SRBHOS科学家评估跨多个尺度的气候和人类反馈以及地理和生态条件。本研究开发的工具将有助于提高我们对地形、生态和地质在构成SRB的复杂环境系统中分配水和能量的作用的理解。更广泛的影响:这项拟议的研究将通过由PIs与Chesapeake研究联盟联合组织的Susquehanna数据和建模研讨会广泛传播给学术、州和联邦SRBHOS合作伙伴。本研讨会提案中所要求的资金将与其他资金来源一起利用,以最大限度地发挥我们的能力,邀请流域建模和数据系统方面的国家领导人审查本研究中开发的拟议工具,并为SRBHOS社区建模工作贡献他们的专业知识和工具。在这个项目中开发的所有软件和数据源都致力于“开源”框架,并通过切萨皮克社区建模计划共享。此外,这项研究工作将利用流域范围内的合作,如目前正在进行的Susquehanna REU,以促进本科教育,并招募目前在水文科学领域代表性不足的人口和地理多样性的学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Duffy其他文献
Cold Agglutinin Disease and Hemolytic Crisis After Hypothermic Circulatory Arrest in a Patient With Beta-Thalassemia Minor
- DOI:
10.1053/j.jvca.2020.02.033 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Christopher Duffy;Christopher Bain;Sesto A Cairo;Christopher Hogan;Paul Geldard;Marco Larobina;Enjarn Lin;Elli Tutungi;Lachlan F Miles - 通讯作者:
Lachlan F Miles
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
rSHUD v2.0:在 R 环境中推进水文非结构化域模拟器和非结构化水文建模
- DOI:
10.5194/gmd-17-497-2024 - 发表时间:
2024 - 期刊:
- 影响因子:5.1
- 作者:
Lele Shu;Paul Ullrich;Xianhong Meng;Christopher Duffy;Hao Chen;Zhaoguo Li - 通讯作者:
Zhaoguo Li
Emoticon use Increases Plain Milk and Vegetable Purchase in a School Cafeteria without Adversely Affecting Total Milk Purchase.
表情符号的使用增加了学校食堂的纯牛奶和蔬菜购买量,但不会对牛奶购买总量产生不利影响。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.2
- 作者:
R. Siegel;A. Anneken;Christopher Duffy;K. Simmons;Michelle E. Hudgens;Mary Kate Lockhart;J. Shelly - 通讯作者:
J. Shelly
Inductive inference of lindenmayer systems: algorithms and computational complexity
- DOI:
10.1007/s11047-025-10024-x - 发表时间:
2025-06-10 - 期刊:
- 影响因子:1.600
- 作者:
Christopher Duffy;Sam Hillis;Umer Khan;Ian McQuillan;Sonja Linghui Shan - 通讯作者:
Sonja Linghui Shan
Limited Visibility Cops and Robbers
有限能见度的警察和强盗
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.1
- 作者:
N. E. Clarke;Danielle Cox;Christopher Duffy;D. Dyer;S. L. Fitzpatrick;M. Messinger - 通讯作者:
M. Messinger
Christopher Duffy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Duffy', 18)}}的其他基金
Multiscale structural basis of photoprotection in plant light-harvesting proteins
植物光捕获蛋白光保护的多尺度结构基础
- 批准号:
BB/T000023/1 - 财政年份:2020
- 资助金额:
$ 17.2万 - 项目类别:
Research Grant
Collaborative Research: Knowledge Guided Machine Learning: A Framework for Accelerating Scientific Discovery
协作研究:知识引导机器学习:加速科学发现的框架
- 批准号:
1934548 - 财政年份:2019
- 资助金额:
$ 17.2万 - 项目类别:
Continuing Grant
EarthCube Building Blocks: Collaborative Proposal: GeoSoft: Collaborative Open Source Software Sharing for Geosciences
EarthCube 构建模块:协作提案:GeoSoft:地球科学协作开源软件共享
- 批准号:
1440291 - 财政年份:2014
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
Travel Support for US Scientists: "SCOPE Rapid Assessment Project on Benefits of Soil Carbon"
美国科学家旅行支持:“SCOPE土壤碳效益快速评估项目”
- 批准号:
1339455 - 财政年份:2013
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
INSPIRE Track 1: The Age of Water and Carbon in Hydroecological Systems: A New Paradigm for Science Innovation and Collaboration through Organic Team Science
INSPIRE 轨道 1:水文生态系统中的水和碳时代:通过有机团队科学进行科学创新和合作的新范式
- 批准号:
1344272 - 财政年份:2013
- 资助金额:
$ 17.2万 - 项目类别:
Continuing Grant
EarthCube Community Workshop: Designing A Roadmap for Workflows in Geosciences
EarthCube 社区研讨会:设计地球科学工作流程路线图
- 批准号:
1238036 - 财政年份:2012
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
RAPID: Susquehanna Shale Hills Critical Zone Observatory - The Critical Zone in the Susquehanna River Basin: The Shale Experiment
RAPID:萨斯奎哈纳页岩山关键区观测站 - 萨斯奎哈纳河流域的关键区:页岩实验
- 批准号:
1037387 - 财政年份:2010
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
CZO: Susquehanna/Shale Hills Critical Zone Observatory
CZO:萨斯奎哈纳/页岩山关键区域天文台
- 批准号:
0725019 - 财政年份:2007
- 资助金额:
$ 17.2万 - 项目类别:
Continuing Grant
Integrated Modeling of Precipitation-Recharge-Runoff at the River Basin Scale: The Susquehanna
流域尺度降水-补给-径流综合模拟:萨斯奎哈纳河
- 批准号:
0310122 - 财政年份:2003
- 资助金额:
$ 17.2万 - 项目类别:
Continuing Grant
Seasonal to Decadal Variability in Discharge & Dissolved Solids in the Colorado River Basin: The Climate-Groundwater System
流量的季节到年代际变化
- 批准号:
9805035 - 财政年份:1998
- 资助金额:
$ 17.2万 - 项目类别:
Continuing Grant
相似海外基金
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
- 批准号:
DP240100143 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Discovery Projects
Building an agenda and community of biodiversity data science
建立生物多样性数据科学议程和社区
- 批准号:
2329533 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
Community Impact with Teacher Leaders in Data Science and Mathematical Modeling
数据科学和数学建模领域教师领导者的社区影响
- 批准号:
2345194 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Continuing Grant
CC* Data Storage: High-Capacity Active Archive to Enable Economical Data Access and Distribution for Illinois Researchers and the National Community
CC* 数据存储:大容量主动存档,为伊利诺伊州研究人员和国家社区提供经济的数据访问和分发
- 批准号:
2346737 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324709 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324713 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
Community, Identity, and Competence: Supporting Low-Income Students in Computing and the Data Sciences at the University of Connecticut
社区、身份和能力:支持康涅狄格大学计算机和数据科学领域的低收入学生
- 批准号:
2322495 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324710 - 财政年份:2024
- 资助金额:
$ 17.2万 - 项目类别:
Standard Grant














{{item.name}}会员




