Multiscale structural basis of photoprotection in plant light-harvesting proteins

植物光捕获蛋白光保护的多尺度结构基础

基本信息

  • 批准号:
    BB/T000023/1
  • 负责人:
  • 金额:
    $ 43.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Plant productivity is defined by the ability to efficiently and safely harvest sunlight. Efficient light-harvesting is ensured by the 'antenna', a large assembly of chlorophyll-filled proteins that capture solar energy and deliver it to the few 'reaction centre' proteins that convert solar energy into chemical energy. However, light levels can to go from moderate to dangerously bright within minutes, leading to excess absorption of energy and damage to the delicate reaction centres. This is mitigated by Energy-dependent quenching (or 'qE'), a protective mechanism in which the antenna senses the high intensity of light and switches to a protective state. In this state excess energy is harmlessly dissipated (or 'quenched') before damage occurs. Recently, it was shown that controlling qE at the molecular level is a very promising route to enhancing food production. This is somewhat hindered by the fact that, unlike other important biological mechanisms, the precise workings of qE are unclear. We do know that the major antenna protein, LHCII, plays a central role. High light intensity causes individual LHCII proteins to switch between energy-harvesting and energy-quenching states. They also collectively reorganize themselves to form large, clustered networks in the chloroplast membrane. qE is therefore a 'multi-scale' mechanism involving structural changes inside antenna proteins and in the whole antenna assembly. Unfortunately, we don't have a detailed picture of what these structural changes are which makes experimental data difficult to interpret and has led to many contradictory ideas of how qE works. We will establish the mechanism of qE with greater accuracy than ever possible. We will use a 'bottom-up' approach, first studying how individual, isolated LHCII operate and using this to establish how they collectively operate as an entire 'antenna'. First we will predict the light-harvesting structure of LHCII. Since experimental techniques have failed to do this, we will instead use rigorous computational simulation. This allows us to mimic realistic conditions, in this case LHCII in a membrane under low light, and to see the movement and flexibility of the structure. Using the techniques of theoretical biophysics we will explain how this structure promotes efficient harvesting of energy rather than deliberate protective dissipation. We will then predict the potential protective, energy-dissipating structures of LHCII. The current 3D structure LHCII is often used as a prototype for the protective state but it is likely a poor approximation. We will use our bio-simulation approach to consider high light conditions, predict these structures, and fully characterize how they function protectively. In the final part, we will consider the large networks of LHCII that occur in natural membranes by experimentation as well as theory. Using ultra-high resolution microscopy we will characterize the structures of these networks. At the same time, using high resolution fluorescence imaging, we will directly measure the rate at which energy is being quenched within them. When combined with our LHCII simulations we develop a complete picture of the qE mechanism: how it operates at the molecular level, how it is controlled by protein structure and external conditions, and how this effects the function of the plant antenna as a whole. This will finally answer a long-standing and controversial question in plant science. More importantly, it will provide a molecular foundation to our efforts to understand how plants capture, manage and transform the sun's energy.
植物生产力是由有效和安全地收集阳光的能力定义的。高效的光捕获是由“天线”确保的,这是一个充满叶绿素的蛋白质的大集合,它捕获太阳能并将其传递到少数几个“反应中心”蛋白质,将太阳能转化为化学能。然而,光水平可以在几分钟内从中等亮度上升到危险亮度,导致能量的过度吸收和对微妙反应中心的损害。这通过依赖于能量的猝灭(或“qE”)来减轻,这是一种保护机制,其中天线感测高强度的光并切换到保护状态。在这种状态下,多余的能量在损坏发生之前被无害地耗散(或“淬火”)。最近,研究表明,在分子水平上控制qE是提高粮食产量的一条非常有前途的途径。与其他重要的生物学机制不同,量化宽松的确切运作机制尚不清楚,这在一定程度上阻碍了这一点。我们知道主要的天线蛋白LHCII起着核心作用。高光强导致单个LHCII蛋白在能量收集和能量淬灭状态之间切换。它们还集体重组自己,在叶绿体膜上形成大的簇状网络。因此,qE是一种“多尺度”机制,涉及天线蛋白内部和整个天线组装中的结构变化。不幸的是,我们没有这些结构变化的详细描述,这使得实验数据难以解释,并导致了许多关于量化宽松如何运作的相互矛盾的想法。我们将建立比以往任何时候都更精确的量化宽松机制。我们将使用一种“自下而上”的方法,首先研究单个的、孤立的LHCII如何运作,并以此来建立它们如何作为一个完整的“天线”集体运作。首先,我们将预测LHCII的捕光结构。由于实验技术无法做到这一点,我们将使用严格的计算模拟。这使我们能够模拟现实条件,在这种情况下,LHCII在弱光下的膜中,并看到结构的运动和灵活性。使用理论生物物理学的技术,我们将解释这种结构如何促进能量的有效收集,而不是故意的保护性耗散。然后,我们将预测潜在的保护,LHCII的能量耗散结构。目前的3D结构LHCII经常被用作保护状态的原型,但它可能是一个很差的近似。我们将使用我们的生物模拟方法来考虑高光条件,预测这些结构,并充分表征它们如何发挥保护作用。在最后一部分,我们将通过实验和理论来考虑天然膜中出现的LHCII的大型网络。使用超高分辨率显微镜,我们将表征这些网络的结构。与此同时,使用高分辨率荧光成像,我们将直接测量能量在其中被淬灭的速率。当结合我们的LHCII模拟时,我们开发了qE机制的全貌:它如何在分子水平上运作,它如何受蛋白质结构和外部条件的控制,以及这如何影响植物天线的整体功能。这将最终回答植物科学中一个长期存在的争议问题。更重要的是,它将为我们理解植物如何捕获、管理和转化太阳能提供分子基础。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II.
  • DOI:
    10.1039/d1cp01628h
  • 发表时间:
    2021-09-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hancock AM;Son M;Nairat M;Wei T;Jeuken LJC;Duffy CDP;Schlau-Cohen GS;Adams PG
  • 通讯作者:
    Adams PG
Trivial Excitation Energy Transfer to Carotenoids is an Unlikely Mechanism for Non-Photochemical Quenching in LHCII
微量激发能量转移到类胡萝卜素是 LHCII 中非光化学猝灭的不太可能的机制
  • DOI:
    10.1101/2021.10.18.464810
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gray C
  • 通讯作者:
    Gray C
Ultrafast Energy Transfer Between Lipid-Linked Chromophores and Plant Light-Harvesting Complex II
脂质连接发色团和植物光捕获复合物 II 之间的超快能量转移
  • DOI:
    10.26434/chemrxiv.14207348.v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hancock A
  • 通讯作者:
    Hancock A
Unravelling the fluorescence kinetics of light-harvesting proteins with simulated measurements.
  • DOI:
    10.1016/j.bbabio.2023.149004
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Gray;L. Kailas;Peter G. Adams;Christopher D. P. Duffy
  • 通讯作者:
    C. Gray;L. Kailas;Peter G. Adams;Christopher D. P. Duffy
Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach.
  • DOI:
    10.1021/acs.jpcb.2c00996
  • 发表时间:
    2022-06-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Sebelik, Vaclav;Duffy, Christopher D. P.;Keil, Erika;Polivka, Tomas;Hauer, Juergen
  • 通讯作者:
    Hauer, Juergen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Duffy其他文献

Cold Agglutinin Disease and Hemolytic Crisis After Hypothermic Circulatory Arrest in a Patient With Beta-Thalassemia Minor
  • DOI:
    10.1053/j.jvca.2020.02.033
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Duffy;Christopher Bain;Sesto A Cairo;Christopher Hogan;Paul Geldard;Marco Larobina;Enjarn Lin;Elli Tutungi;Lachlan F Miles
  • 通讯作者:
    Lachlan F Miles
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
rSHUD v2.0:在 R 环境中推进水文非结构化域模拟器和非结构化水文建模
  • DOI:
    10.5194/gmd-17-497-2024
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Lele Shu;Paul Ullrich;Xianhong Meng;Christopher Duffy;Hao Chen;Zhaoguo Li
  • 通讯作者:
    Zhaoguo Li
Emoticon use Increases Plain Milk and Vegetable Purchase in a School Cafeteria without Adversely Affecting Total Milk Purchase.
表情符号的使用增加了学校食堂的纯牛奶和蔬菜购买量,但不会对牛奶购买总量产生不利影响。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    R. Siegel;A. Anneken;Christopher Duffy;K. Simmons;Michelle E. Hudgens;Mary Kate Lockhart;J. Shelly
  • 通讯作者:
    J. Shelly
Inductive inference of lindenmayer systems: algorithms and computational complexity
  • DOI:
    10.1007/s11047-025-10024-x
  • 发表时间:
    2025-06-10
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Christopher Duffy;Sam Hillis;Umer Khan;Ian McQuillan;Sonja Linghui Shan
  • 通讯作者:
    Sonja Linghui Shan
Limited Visibility Cops and Robbers
有限能见度的警察和强盗
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    N. E. Clarke;Danielle Cox;Christopher Duffy;D. Dyer;S. L. Fitzpatrick;M. Messinger
  • 通讯作者:
    M. Messinger

Christopher Duffy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Duffy', 18)}}的其他基金

Collaborative Research: Knowledge Guided Machine Learning: A Framework for Accelerating Scientific Discovery
协作研究:知识引导机器学习:加速科学发现的框架
  • 批准号:
    1934548
  • 财政年份:
    2019
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant
EarthCube Building Blocks: Collaborative Proposal: GeoSoft: Collaborative Open Source Software Sharing for Geosciences
EarthCube 构建模块:协作提案:GeoSoft:地球科学协作开源软件共享
  • 批准号:
    1440291
  • 财政年份:
    2014
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Travel Support for US Scientists: "SCOPE Rapid Assessment Project on Benefits of Soil Carbon"
美国科学家旅行支持:“SCOPE土壤碳效益快速评估项目”
  • 批准号:
    1339455
  • 财政年份:
    2013
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
INSPIRE Track 1: The Age of Water and Carbon in Hydroecological Systems: A New Paradigm for Science Innovation and Collaboration through Organic Team Science
INSPIRE 轨道 1:水文生态系统中的水和碳时代:通过有机团队科学​​进行科学创新和合作的新范式
  • 批准号:
    1344272
  • 财政年份:
    2013
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant
EarthCube Community Workshop: Designing A Roadmap for Workflows in Geosciences
EarthCube 社区研讨会:设计地球科学工作流程路线图
  • 批准号:
    1238036
  • 财政年份:
    2012
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
RAPID: Susquehanna Shale Hills Critical Zone Observatory - The Critical Zone in the Susquehanna River Basin: The Shale Experiment
RAPID:萨斯奎哈纳页岩山关键区观测站 - 萨斯奎哈纳河流域的关键区:页岩实验
  • 批准号:
    1037387
  • 财政年份:
    2010
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
CZO: Susquehanna/Shale Hills Critical Zone Observatory
CZO:萨斯奎哈纳/页岩山关键区域天文台
  • 批准号:
    0725019
  • 财政年份:
    2007
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant
A Synthesis of Community Data and Modeling for Advancing River Basin Science: The Evolving Susquehanna River Basin Experiment
促进流域科学发展的社区数据和建模的综合:不断发展的萨斯奎哈纳河流域实验
  • 批准号:
    0609791
  • 财政年份:
    2006
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Integrated Modeling of Precipitation-Recharge-Runoff at the River Basin Scale: The Susquehanna
流域尺度降水-补给-径流综合模拟:萨斯奎哈纳河
  • 批准号:
    0310122
  • 财政年份:
    2003
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant
Seasonal to Decadal Variability in Discharge & Dissolved Solids in the Colorado River Basin: The Climate-Groundwater System
流量的季节到年代际变化
  • 批准号:
    9805035
  • 财政年份:
    1998
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant

相似国自然基金

CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
染色体结构维持蛋白1在端粒DNA双链断裂损伤修复中的作用及其机理
  • 批准号:
    31801145
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
典型团簇结构模式随尺度变化的理论计算研究
  • 批准号:
    21043001
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
  • 批准号:
    10402036
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structural Basis of Cyclic Nucleotide Signal Translation and Inhibition
环核苷酸信号翻译和抑制的结构基础
  • 批准号:
    483395
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Operating Grants
Structural basis of diacylglycerol kinase alpha, a novel target for cancer immunotherapy
癌症免疫治疗新靶点二酰甘油激酶α的结构基础
  • 批准号:
    23K05659
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
  • 批准号:
    10549648
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
Dissecting how phages modulate bacterial immunity - structural basis of dNTPase inhibition by T7-like phages
剖析噬菌体如何调节细菌免疫——T7 样噬菌体抑制 dNTPase 的结构基础
  • 批准号:
    2836187
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Studentship
NSF PRFB FY 2023: Unlocking the genetic basis of structural coloration
NSF PRFB 2023 财年:解锁结构着色的遗传基础
  • 批准号:
    2305924
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Fellowship Award
Structural basis of Tn7 site-directed targeting
Tn7定点靶向的结构基础
  • 批准号:
    478124
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Operating Grants
Structural basis of the eukaryotic transcription coupled DNA repair
真核转录耦合DNA修复的结构基础
  • 批准号:
    23KJ0485
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
  • 批准号:
    23K14138
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural Basis of Coupling and Dynamics in K+ Channels
K 通道耦合和动力学的结构基础
  • 批准号:
    10682241
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
Molecular basis of activation of the orphan nuclear receptor Nurr1
孤儿核受体 Nurr1 激活的分子基础
  • 批准号:
    10831795
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了