High Performance Approximation Algorithms for Nonconvex Quadratic Optimization with Applications in Signal Processing and Communication

非凸二次优化的高性能逼近算法及其在信号处理和通信中的应用

基本信息

  • 批准号:
    0610037
  • 负责人:
  • 金额:
    $ 14.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

The proposed research deals with polynomial time approximation algorithms for a class of nonconvex quadratic optimization problems which can deliver guaranteed high quality approximate solutions. These approximation algorithms are based on interior point methods for semi-definite programming (SDP) relaxations of the nonconvex problems, followed by some randomized rounding procedure. The investigator of this project proposes to analyze both the worst-case and the average-case performance ratios of the SDP relaxations for nonconvex quadratic optimization problems under some realistic probabilistic models arising from wireless communication. The focus of proposed research is on (i) design and performance analysis of SDP relaxation algorithms for quadratically constrained nonconvex quadratic programs, and (ii) probabilistic analysis of SDP relaxation algorithms for the binary least squares problem. The choice of these topics is strongly motivated by the applications from signal processing and wireless communications. The approach will be to combine the modern interior point optimization methodology with the theory of random matrices to estimate the asymptotic performance of SDP relaxations for large systems. Overall, the proposed research is built on the past successes the investigator has had in developing new and applying the state-of-the-art optimization techniques to solve some fundamental problems in signal processing and digital communication. The latter two areas had been relying mostly on the gradient descent or the least squares methods in the past thirty years. With the recent advance of highly efficient interior point methods in mathematical programming, the opportunity is ripe to use these modern optimization techniques and the related software tools to help advance the field of signal processing and digital communication, both of which are known to have intensive computational requirement.
针对一类非凸二次优化问题,提出了一种多项式时间近似算法,该算法能够保证得到高质量的近似解。这些近似算法是基于半定规划(SDP)松弛的非凸问题的内点方法,其次是一些随机舍入过程。本计画的研究者提出在无线通讯的实际机率模型下,分析非凸二次最佳化问题的SDP松弛的最坏情形与平均情形的效能比。建议的研究重点是(i)二次约束非凸二次规划的SDP松弛算法的设计和性能分析,以及(ii)二进制最小二乘问题的SDP松弛算法的概率分析。这些主题的选择是强烈的动机从信号处理和无线通信的应用。该方法将联合收割机现代内点优化方法与随机矩阵理论相结合,以估计大系统的SDP松弛的渐近性能。 总的来说,拟议的研究是建立在过去的成功,研究人员已经在开发新的和应用国家的最先进的优化技术,以解决信号处理和数字通信中的一些基本问题。后两个领域在过去的三十年里主要依赖于梯度下降法或最小二乘法。随着数学规划中高效内点方法的最新进展,使用这些现代优化技术和相关软件工具来帮助推进信号处理和数字通信领域的机会已经成熟,这两个领域都具有密集的计算需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhi-Quan Luo其他文献

Improved RIP-Based Bounds for Guaranteed Performance of Several Compressed Sensing Algorithms
改进的基于 RIP 的边界以保证多种压缩感知算法的性能
  • DOI:
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun-Bin Zhao;Zhi-Quan Luo
  • 通讯作者:
    Zhi-Quan Luo
On the Linear Convergence of a Proximal Gradient Method for a Class of Nonsmooth Convex Minimization Problems
关于一类非光滑凸极小化问题的近似梯度法的线性收敛性
Weak Stability of ℓ1-Minimization Methods in Sparse Data Reconstruction
稀疏数据重构中α1-最小化方法的弱稳定性
Decentralized Non-Convex Learning With Linearly Coupled Constraints: Algorithm Designs and Application to Vertical Learning Problem
具有线性耦合约束的分散非凸学习:算法设计及其在垂直学习问题中的应用
Resource Reservation in Backhaul and Radio Access Network With Uncertain User Demands
用户需求不确定的回程和无线接入网络中的资源预留

Zhi-Quan Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhi-Quan Luo', 18)}}的其他基金

CIF: Small: Collaborative Research: Optimal Provision of Backhaul and Radio Access Networks: A Cross-Network Approach
CIF:小型:协作研究:回程和无线接入网络的优化配置:跨网络方法
  • 批准号:
    1526434
  • 财政年份:
    2015
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
CIF: Small: A Cross-Tier Approach to Interference Management in Wireless Heterogeneous Networks
CIF:小型:无线异构网络中干扰管理的跨层方法
  • 批准号:
    1216858
  • 财政年份:
    2012
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
Semidefinite Programming Relaxation: Approximation Algorithms, Performance Analysis and Applications
半定规划松弛:近似算法、性能分析和应用
  • 批准号:
    1015346
  • 财政年份:
    2010
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
Optimal Resource Management: Complexity, Duality and Approximation
最优资源管理:复杂性、二元性和近似性
  • 批准号:
    0726336
  • 财政年份:
    2007
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
Advanced Optimization Methodologies for Signal Processing and Communication
信号处理和通信的高级优化方法
  • 批准号:
    0312416
  • 财政年份:
    2003
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant

相似海外基金

Approximation Algorithms for Restricted Invertibility and Experimental Design
受限可逆性的近似算法和实验设计
  • 批准号:
    576020-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms and numerical experiments for covering vertices by long paths
长路径覆盖顶点的近似算法和数值实验
  • 批准号:
    573063-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    University Undergraduate Student Research Awards
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPIN-2020-04043
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms and Hardness of Approximation for Optimization Problems
优化问题的逼近算法和逼近难度
  • 批准号:
    RGPIN-2018-04677
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPAS-2020-00075
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
  • 批准号:
    RGPIN-2019-04197
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
  • 批准号:
    RGPIN-2019-04197
  • 财政年份:
    2021
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2021
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了