Semidefinite Programming Relaxation: Approximation Algorithms, Performance Analysis and Applications
半定规划松弛:近似算法、性能分析和应用
基本信息
- 批准号:1015346
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI's research to be carried out through this award consists of a systematic study of a symmetric matrix lifting technique to solve nonconvex polynomial optimization problems. This includes a complete complexity-theoretic analysis as well as the design of polynomial time approximation algorithms. Central to this study is to identify what classes of polynomial optimization problems are computationally intractable, and how well they can be approximately solved with a complexity that is polynomial in size and solution accuracy. In each case, the research focus will be on the development of a fundamental theory for an in-depth understanding of the problems under study, and the design, implementation, and analysis of robust and efficient numerical methods for solving these problems. The proposed research aims to develop polynomial time approximation algorithms which can deliver guaranteed high quality approximate solutions for some classes of polynomial optimization problems. These approximation algorithms are based on a symmetric matrix lifting technique and semidefinite programming relaxation, followed by special procedure to obtain a provably high quality feasible solution. The proposed approach leads to nonlinear semidefinite programs whose size is significantly smaller than those obtained from the Sum of Squares relaxation approach, and is therefore expected to be much more efficient computationally. Computational testing will be conducted to verify the efficiency and accuracy of the proposed approximation approach. The research to be performed by the PI for this award is strongly motivated by applications of polynomial optimization in wireless communication and ad hoc wireless sensor networks. His research is expected to not only advance the field of nonconvex polynomial optimization, but also significantly impact design of computational methods for interference management in multi-user communication, compressive sensing and sparse principal component analysis.
PI将通过该奖项进行的研究包括系统研究对称矩阵提升技术来解决非凸多项式优化问题。这包括一个完整的复杂性理论分析以及多项式时间近似算法的设计。这项研究的核心是确定什么类的多项式优化问题是计算上难以处理的,以及如何以及他们可以近似解决的复杂性,是多项式的大小和解决方案的精度。在每种情况下,研究重点将是深入了解所研究问题的基础理论的发展,以及解决这些问题的强大而有效的数值方法的设计,实施和分析。该研究的目的是开发多项式时间近似算法,可以提供保证高质量的近似解的某些类别的多项式优化问题。这些近似算法是基于对称矩阵提升技术和半定规划松弛,然后通过特殊的程序来获得可证明的高质量可行解。所提出的方法导致非线性半定程序,其大小显着小于从平方和松弛方法获得的,因此预计将是更有效的计算。将进行计算测试,以验证所提出的近似方法的效率和准确性。PI为获得该奖项而进行的研究受到多项式优化在无线通信和ad hoc无线传感器网络中的应用的强烈激励。他的研究不仅有望推进非凸多项式优化领域,而且还将对多用户通信、压缩感知和稀疏主成分分析中干扰管理的计算方法设计产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhi-Quan Luo其他文献
Improved RIP-Based Bounds for Guaranteed Performance of Several Compressed Sensing Algorithms
改进的基于 RIP 的边界以保证多种压缩感知算法的性能
- DOI:
- 发表时间:
2020-07 - 期刊:
- 影响因子:0
- 作者:
Yun-Bin Zhao;Zhi-Quan Luo - 通讯作者:
Zhi-Quan Luo
On the Linear Convergence of a Proximal Gradient Method for a Class of Nonsmooth Convex Minimization Problems
关于一类非光滑凸极小化问题的近似梯度法的线性收敛性
- DOI:
10.1007/s40305-013-0015-x - 发表时间:
2013-05 - 期刊:
- 影响因子:0
- 作者:
Hai-Bin Zhang;Jiao-Jiao Jiang;Zhi-Quan Luo - 通讯作者:
Zhi-Quan Luo
Weak Stability of ℓ1-Minimization Methods in Sparse Data Reconstruction
稀疏数据重构中α1-最小化方法的弱稳定性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Yun-Bin Zhao;Houyuan Jiang;Zhi-Quan Luo - 通讯作者:
Zhi-Quan Luo
Decentralized Non-Convex Learning With Linearly Coupled Constraints: Algorithm Designs and Application to Vertical Learning Problem
具有线性耦合约束的分散非凸学习:算法设计及其在垂直学习问题中的应用
- DOI:
10.1109/tsp.2022.3184772 - 发表时间:
2021-03 - 期刊:
- 影响因子:0
- 作者:
Jiawei Zhang;Songyang Ge;Tsung-Hui Chang;Zhi-Quan Luo - 通讯作者:
Zhi-Quan Luo
Resource Reservation in Backhaul and Radio Access Network With Uncertain User Demands
用户需求不确定的回程和无线接入网络中的资源预留
- DOI:
10.1109/tvt.2022.3182899 - 发表时间:
2022 - 期刊:
- 影响因子:6.8
- 作者:
Navid Reyhanian;Hamid Farmanbar;Zhi-Quan Luo - 通讯作者:
Zhi-Quan Luo
Zhi-Quan Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhi-Quan Luo', 18)}}的其他基金
CIF: Small: Collaborative Research: Optimal Provision of Backhaul and Radio Access Networks: A Cross-Network Approach
CIF:小型:协作研究:回程和无线接入网络的优化配置:跨网络方法
- 批准号:
1526434 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CIF: Small: A Cross-Tier Approach to Interference Management in Wireless Heterogeneous Networks
CIF:小型:无线异构网络中干扰管理的跨层方法
- 批准号:
1216858 - 财政年份:2012
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Optimal Resource Management: Complexity, Duality and Approximation
最优资源管理:复杂性、二元性和近似性
- 批准号:
0726336 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
High Performance Approximation Algorithms for Nonconvex Quadratic Optimization with Applications in Signal Processing and Communication
非凸二次优化的高性能逼近算法及其在信号处理和通信中的应用
- 批准号:
0610037 - 财政年份:2006
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Advanced Optimization Methodologies for Signal Processing and Communication
信号处理和通信的高级优化方法
- 批准号:
0312416 - 财政年份:2003
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
- 批准号:
2418579 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
SHF: SMALL: A New Semantics for Type-Level Programming in Haskell
SHF:SMALL:Haskell 中类型级编程的新语义
- 批准号:
2345580 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Overcoming Programming Barriers for Non-Computing Majors in Data Science
克服数据科学非计算专业的编程障碍
- 批准号:
2336929 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Unlocking Students Potential in Programming with Coding Bootcamps
通过编码训练营释放学生的编程潜力
- 批准号:
2345072 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
- 批准号:
2345097 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321044 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Applying a Program Science approach for strengthening partnerships and advancing embedded research to optimize public health programming for HIV and sexually transmitted and blood-borne infections among criminalized populations in the Global South
应用计划科学方法来加强伙伴关系并推进嵌入式研究,以优化南半球犯罪人群中针对艾滋病毒、性传播和血源性感染的公共卫生规划
- 批准号:
502554 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
CAREER: Live Programming for Finite Model Finders
职业:有限模型查找器的实时编程
- 批准号:
2337667 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant