Multiscale Modeling and Simulations of Micro- and Nano-Scale Electrokinetic Flows

微米级和纳米级动电流的多尺度建模和仿真

基本信息

  • 批准号:
    0613085
  • 负责人:
  • 金额:
    $ 9.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

With the growing interests in bio-MEMS and bio-NEMS applications and fuel cell technologies, electrokinetic transport has received great attention in recent years. Electrokinetic flows have become one of the most important non-mechanical techniques in micro- and nano-systems and have been actively used for flow-controls, including pumping, separating and mixing. Modeling and simulations of electroosmotic phenomena based on the continuum Poisson-Boltzmann equation and the Navier-Stokes equations have been used to explain many experimental observations and guided the design of Micro-Total Analysis System. However, when the characteristic size of the flow system reaches the size comparable to submicron or the ion (molecule) size, the continuum assumption breaks down and the molecular effects cannot be ignored. Molecular-based methods have been used to model electroosmotic flows at nanoscale channels. However, because of the high computational cost, molecular dynamics simulations can only probe a very limited time (e.g., tens of nanoseconds) and lengthscale (e.g., a few nanometers) domain. The multiscale simulation capable of coupling molecular dynamics simulation of ions near material surfaces (molecular scale) and the continuum Poisson-Boltzmann simulation for the bulk region (micron scale) is an efficient way to solve this difficulty. The important thrust of the proposed research is to invent a new multiscale method to simulate micro- and nano-fluid dynamics in electrokinetic systems and to develop new algorithms for multiscale modeling that incorporate long-range Coulomb interactions in both atomistic and continuum regions. The distinguished feature in this approach is that only a small portion of the charged particles in the field near interfaces are simulated in MD, while in traditional particle-mesh based schemes all particles in the space must be followed. The research objectives in this proposal include: (i) develop an innovative multiscale (hybrid) method coupling molecular dynamics simulation with continuum method to simulate electrokinetic flows in micro and nano systems; (ii) investigate the multiscale effects on the electrokinetic flow; (iii) Investigate the flow mechanisms and characteristics of the micro- and nano-scale electrokinetic flows, including pumping, separation and mixing. Electrokinetic phenomena are the basis of many lab-on-a-chip concepts. The electrokinetic flow has many important applications in micro and nano systems, such as bio-chip or fuel cells. The proposed research will provide the mathematical foundations necessary for modeling the electrokinetic flows in micro- and nano-systems and develop multiscale numerical methods for simulating the electrokinetic flow. The algorithms developed in the project will be available to the community and can be extended for many studies of nano-technologies, such as nano-machines and their interface with charged biomolecules. A highly efficient parallel program will be developed and can be easily used by the research community. The proposed research will also provide an interdisciplinary training to postdocs, graduate and undergraduate students involved in the project, and bring basic material on numerical analysis, scientific computing, continuum fluid mechanics, nanomechanics and electokinetics into the general curriculum.
近年来,随着生物MEMS和生物NEMS应用以及燃料电池技术的日益增长的兴趣,电动输送受到了极大的关注。电动流动已成为微纳米系统中最重要的非机械技术之一,并已被积极用于流动控制,包括泵送,分离和混合。基于连续Poisson-Boltzmann方程和Navier-Stokes方程的电渗现象的建模和模拟已经被用来解释许多实验观察,并指导微全分析系统的设计。然而,当流动系统的特征尺寸达到亚微米或离子(分子)尺寸时,连续介质假设就被打破,分子效应不能被忽略。基于分子的方法已被用来模拟电渗流在纳米通道。然而,由于高计算成本,分子动力学模拟只能探测非常有限的时间(例如,几十纳秒)和长度尺度(例如,几纳米)域。将材料表面附近离子的分子动力学模拟(分子尺度)和体区域的连续Poisson-Boltzmann模拟(微米尺度)耦合起来的多尺度模拟是解决这一难题的有效途径。所提出的研究的重要推力是发明一种新的多尺度方法来模拟电动系统中的微观和纳米流体动力学,并开发新的多尺度建模算法,将远程库仑相互作用在原子和连续区域。这种方法的显著特点是,只有一小部分的带电粒子在界面附近的领域模拟在MD,而在传统的粒子网格为基础的计划,必须遵循的空间中的所有粒子。本项目的研究目标包括:(i)开发一种创新的多尺度(混合)方法,将分子动力学模拟与连续介质方法相结合,以模拟微纳米系统中的电动流动;(ii)研究多尺度对电动流动的影响;(iii)研究微纳米尺度电动流动的流动机制和特性,包括泵送、分离和混合。电动现象是许多芯片实验室概念的基础。动电流动在微纳系统中有着重要的应用,如生物芯片、燃料电池等。拟议的研究将提供必要的数学基础建模的电动力学流动在微米和纳米系统和开发多尺度数值方法模拟电动力学流动。该项目开发的算法将提供给社区,并可扩展到许多纳米技术的研究,如纳米机器及其与带电生物分子的界面。一个高效的并行程序将被开发,并可以很容易地被研究界使用。拟议的研究还将为参与该项目的博士后,研究生和本科生提供跨学科培训,并将数值分析,科学计算,连续介质流体力学,纳米力学和电磁学的基本材料纳入一般课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiyi Chen其他文献

Secondary aerosol formation from a Chinese gasoline vehicle: Impacts of fuel (E10, gasoline) and driving conditions (idling, cruising).
中国汽油车二次气溶胶的形成:燃料(E10、汽油)和驾驶条件(怠速、巡航)的影响
  • DOI:
    10.1016/j.scitotenv.2021.148809
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Hui Wang;Song Guo;Ying Yu;Ruizhe Shen;Wenfei Zhu;Rongzhi Tang;Rui Tan;Kefan Liu;Kai Song;Wenbin Zhang;Zhou Zhang;Shijin Shuai;Hongming Xu;Jing Zheng;Shiyi Chen;Shaomeng Li;Limin Zeng;Zhijun Wu
  • 通讯作者:
    Zhijun Wu
Chemical looping dry reforming of methane with hydrogen generation on Fe2O3/Al2O3 oxygen carrier
Fe2O3/Al2O3 氧载体化学链干重整制氢甲烷
  • DOI:
    10.1016/j.cej.2019.02.197
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Min Zhu;Yeheng Song;Shiyi Chen;Meng Li;Lei Zhang;Wenguo Xiang
  • 通讯作者:
    Wenguo Xiang
Recent progress in compressible turbulence
可压缩湍流的最新进展
  • DOI:
    10.1007/s10409-015-0459-9
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Shiyi Chen;Zhenhua Xia;Jianchun Wang;Yantao Yang
  • 通讯作者:
    Yantao Yang
Flow topology and enstrophy production in chemically reacting compressible isotropic turbulence
化学反应可压缩各向同性湍流中的流动拓扑和熵产生
  • DOI:
    10.1103/physrevfluids.7.033201
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jian Teng;Jianchun Wang;Shiyi Chen
  • 通讯作者:
    Shiyi Chen
A new identification method in sampled quadrant analysis for wall-bounded turbulence
壁面湍流采样象限分析的一种新识别方法
  • DOI:
    10.1063/1.4954057
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yipeng Shi;Zhenhua Xia;Shiyi Chen
  • 通讯作者:
    Shiyi Chen

Shiyi Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiyi Chen', 18)}}的其他基金

International Symposium on Fluid Turbulence; Beijing, China
流体湍流国际研讨会;
  • 批准号:
    0940371
  • 财政年份:
    2009
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Standard Grant
International Conference on Nonlinear Mechanics
国际非线性力学会议
  • 批准号:
    0649910
  • 财政年份:
    2006
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Standard Grant
DLMS: Acquisition of Instrumentation for a Digital Laboratory for Multi-Scale Science
DLMS:为多尺度科学数字实验室采购仪器
  • 批准号:
    0320907
  • 财政年份:
    2003
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23K25946
  • 财政年份:
    2024
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
  • 批准号:
    2412025
  • 财政年份:
    2024
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Standard Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23H01250
  • 财政年份:
    2023
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Machine learning for health modeling and simulations
用于健康建模和模拟的机器学习
  • 批准号:
    DGECR-2022-00398
  • 财政年份:
    2022
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Discovery Launch Supplement
M4GHG: Integrating multi-Scale observations with wastewater process simulations for measuring, monitoring and modeling GHG emissions in Canadian sewers and WRRFs
M4GHG:将多尺度观测与废水处理模拟相结合,用于测量、监测和建模加拿大下水道和 WRRF 中的温室气体排放
  • 批准号:
    577244-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Alliance Grants
GEM: Modeling Realistic Chorus Generation Using Large-Scale Particle-in-Cell Simulations
GEM:使用大规模细胞内粒子模拟模拟真实的合唱生成
  • 批准号:
    2209155
  • 财政年份:
    2022
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Standard Grant
Shape dynamics of melting ice: Experiments, simulations, modeling and analysis
融化冰的形状动力学:实验、模拟、建模和分析
  • 批准号:
    2206573
  • 财政年份:
    2022
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Standard Grant
Investigating blood pressure regulation during pregnancy: a mathematical modeling, data analysis, and large-scale simulations approach
研究怀孕期间的血压调节:数学建模、数据分析和大规模模拟方法
  • 批准号:
    569342-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Machine learning for health modeling and simulations
用于健康建模和模拟的机器学习
  • 批准号:
    RGPIN-2022-04462
  • 财政年份:
    2022
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Discovery Grants Program - Individual
Shoulder musculoskeletal modeling: from data-tracking to predictive simulations
肩部肌肉骨骼建模:从数据跟踪到预测模拟
  • 批准号:
    RGPIN-2019-04978
  • 财政年份:
    2022
  • 资助金额:
    $ 9.45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了