Machine learning for health modeling and simulations
用于健康建模和模拟的机器学习
基本信息
- 批准号:RGPIN-2022-04462
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of my research program is to improve and automatize the methodology of mathematical modeling in medicine and public health using artificial intelligence. I will elaborate new methods, software tools and algorithms to automatize the generation and calibration of interpretable mathematical models for decision support systems in respiratory health. The scaling of the capacity of these models, and their simulations, will enable the assimilation of data streams in real time to support stakeholders in the management of respiratory diseases and the prevention of epidemics. The three themes of my program will focus on the different aspects of automatic model generation and calibration: computer-aided composition of interpretable models (Theme 1), machine learning of model structure (Theme 2), and real-time update of simulations based on data streams (Theme 3). In Theme 1, I will use methods stemming from mathematical modeling and computer science to create flexible model templates and design a software environment to create, edit and manipulate models represented in these templates. In Theme 2, I will design algorithms to train these models to solve prediction problems represented by examples of time-dependent input-output data, and I will compare their performance to that of state-of-the-art machine learning and deep learning approaches. In Theme 3, I will design software tools for the validation and cleaning of data streams, and I will adapt active learning approaches to the process of updating simulations in real time concurrently to the data assimilation process of the underlying model. The methodological innovations of my emerging research program will result in software tools and algorithms that are urgently needed for the analysis of big health data with models that are reliable and interpretable for knowledge users as well as easy to maintain and reuse for modelers. The combination of mathematical models and machine learning in a data-driven modeling approach is a promising avenue for health research (in healthcare and public health) that has broad applicability. I have the perfect skillset to carry forward this program that draws upon the fields of mathematics, computer science and engineering, and health sciences. My research program will be supported by data obtained in interdisciplinary collaborative projects where I lead machine learning components. I will only use data that will be certified from ethics review boards, or that will be publicly available. I am already using data from the research data warehouse at Sainte-Justine's hospital pediatric intensive care unit, which has ethics certification for the development of cardiorespiratory models. I am also developing models of COVID-19 vaccination campaigns based on public health data in Quebec.
我的研究计划的总体目标是使用人工智能改进和自动化医学和公共卫生中的数学建模方法。我将阐述新的方法,软件工具和算法,以自动生成和校准呼吸健康决策支持系统的可解释的数学模型。这些模型及其模拟能力的扩大将能够在真实的时间内同化数据流,以支持利益攸关方管理呼吸道疾病和预防流行病。我的计划的三个主题将集中在自动模型生成和校准的不同方面:可解释模型的计算机辅助组成(主题1),模型结构的机器学习(主题2)和基于数据流的实时更新模拟(主题3)。在主题1中,我将使用数学建模和计算机科学的方法来创建灵活的模型模板,并设计一个软件环境来创建,编辑和操作这些模板中表示的模型。在主题2中,我将设计算法来训练这些模型,以解决由时间相关的输入输出数据示例所代表的预测问题,并将其性能与最先进的机器学习和深度学习方法进行比较。在主题3中,我将设计用于数据流的验证和清理的软件工具,并且我将使主动学习方法适应于在真实的时间中更新模拟的过程,同时适应于基础模型的数据同化过程。我的新兴研究项目的方法创新将导致软件工具和算法,这些工具和算法是分析大健康数据所迫切需要的,其模型对于知识用户来说是可靠和可解释的,并且易于维护和重用。在数据驱动的建模方法中,数学模型和机器学习的结合是健康研究(医疗保健和公共卫生)的一个有前途的途径,具有广泛的适用性。我有完美的技能来推进这一计划,借鉴了数学,计算机科学和工程领域,以及健康科学。我的研究计划将得到我领导机器学习组件的跨学科合作项目中获得的数据的支持。我将只使用将从道德审查委员会认证的数据,或将公开提供。我已经在使用来自Sainte-Justine医院儿科重症监护室的研究数据仓库的数据,该医院拥有心肺模型开发的伦理认证。我还在根据魁北克的公共卫生数据开发COVID-19疫苗接种活动的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
deMontigny, Simon其他文献
deMontigny, Simon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('deMontigny, Simon', 18)}}的其他基金
Machine learning for health modeling and simulations
用于健康建模和模拟的机器学习
- 批准号:
DGECR-2022-00398 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
- 批准号:
2339381 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantifying the Mortality Consequences of Climate Change: A Machine Learning Analysis of Japan in 1972-2019
量化气候变化的死亡后果:1972-2019 年日本的机器学习分析
- 批准号:
23K12463 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Power Electronics Converter's Health Management using Machine Learning
使用机器学习的电力电子转换器的健康管理
- 批准号:
2802267 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
- 批准号:
10732745 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
- 批准号:
10572582 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
- 批准号:
10827649 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
- 批准号:
10739049 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别: