SoD-HCER: Learning Based Programming
SoD-HCER:基于学习的编程
基本信息
- 批准号:0613885
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-15 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A significant amount of the software written today interacts with naturally occurring (sensor) data such as text, speech, images and video, streams of financial data, and biological sequences, and needs to reason with respect to concepts that are complex and often difficult to define explicitly in terms of the raw data observed (e.g., determining the gender of a person in an image, determining the topic of an article, determining whether more than three people are currently meeting in someone's office, scheduling a computation in a grid in a way that adapts to a multitude of properties of the resources and links. Applications that require such abilities are expected to rapidly grow even more important in future years. While conventional programming languages rely on a programmer to explicitly define all the concepts and relations involved, programming with naturally occurring data that is highly variable and ambiguous at the measurement level necessitates a programming model in which some of the variables, concepts and relations may not be known at programming time, may be defined only in a data driven way, or may not be unambiguously defined without relying on other concepts acquired this way. It must be possible to reason with respect to variables that do not depend on tight assumptions on the environment in which the measurements are taken, and needs to center around a semantic level interaction model made possible via components that are data-dependent and support abstractions over real-world observations. Today's programming paradigms, and the corresponding programming languages, are not conducive to that goal. Consequently, despite two decades of progress in machine learning, and a clear need for systems with significant trainable (data dependent) components, few systems today incorporate significant machine learning components, and even fewer use more than a single classifier. In this project on Learning Based Programming (LBP), the PI will explore a novel software engineering paradigm that allows a programmer seamless incorporation of trainable variables into the program and, consequently, the ability to reason using high-level concepts without the need to explicitly define them in terms of all the variables they might depend on, or the functional dependencies among them; these may be determined in a data-driven way, via learning operators whose details are abstracted away from the programmer. In this work, the PI will flesh out the details of the LBP paradigm he envisages, and implement an LBP language and study it via the development of applications in two areas: ubiquitous computing and natural language processing.Broader Impacts: This project will lead to cross-fertilization and mutual reinvigoration of the software engineering and machine learning fields. Enabling the development of computer systems that interact and cope with the variability of naturally occurring (sensor) data will require fundamental advances in compilation and software engineering issues. Conversely, availability of the LBP vehicle will motivate researchers in machine learning to explore the process of making inferences that rely on a large number of mutually dependent learners as a means to providing programmers with better abstractions so that they can more effectively tackle a broad range of increasingly complex applications involving such data.
今天编写的大量软件与自然产生的(传感器)数据交互,例如文本、语音、图像和视频、金融数据流和生物序列,并且需要针对复杂且通常难以根据观察到的原始数据明确定义的概念进行推理(例如,确定图像中的人的性别、确定文章的主题、确定当前是否有三个以上的人在某人的办公室开会、以适应资源和链接的多种属性的方式在网格中调度计算)。需要这种能力的应用程序预计将在未来几年迅速增长,变得更加重要。虽然传统的编程语言依赖于程序员来明确地定义所涉及的所有概念和关系,但是利用在测量级别上高度可变和不明确的自然产生的数据进行编程需要编程模型,其中一些变量、概念和关系在编程时可能是未知的,可以仅以数据驱动的方式定义,或者可能不依赖于以这种方式获得的其他概念而不被明确地定义。必须能够对不依赖于进行测量的环境的严格假设的变量进行推理,并且需要以语义级交互模型为中心,该模型通过依赖于数据并支持对真实世界观察的抽象的组件来实现。今天的编程范例和相应的编程语言都不利于实现这一目标。因此,尽管机器学习取得了20年的进步,而且显然需要具有重要的可训练(依赖数据)组件的系统,但今天很少有系统包含重要的机器学习组件,甚至更少的系统使用超过一个分类器。在这个基于学习的编程(LBP)项目中,PI将探索一种新的软件工程范例,允许程序员无缝地将可训练变量合并到程序中,从而能够使用高级概念进行推理,而不需要根据它们可能依赖的所有变量或它们之间的函数依赖关系来明确定义它们;这些可以通过学习操作符以数据驱动的方式确定,学习操作符的细节从程序员那里抽象出来。在这项工作中,PI将充实他设想的LBP范式的细节,并实现LBP语言,并通过在普适计算和自然语言处理两个领域的应用程序开发来研究它。广泛的影响:该项目将导致软件工程和机器学习领域的交叉滋养和相互振兴。要使计算机系统能够与自然产生的(传感器)数据的可变性相互作用并加以处理,将需要在汇编和软件工程问题上取得根本进展。相反,LBP工具的可用性将激励机器学习研究人员探索推理过程,这些推理依赖于大量相互依赖的学习者作为一种手段,为程序员提供更好的抽象,以便他们能够更有效地处理涉及此类数据的广泛的日益复杂的应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Roth其他文献
Clustering appearances of 3D objects
3D 对象的聚类外观
- DOI:
10.1109/cvpr.1998.698639 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
R. Basri;Dan Roth;D. Jacobs - 通讯作者:
D. Jacobs
Learning from natural instructions
- DOI:
10.1007/s10994-013-5407-y - 发表时间:
2013-09-18 - 期刊:
- 影响因子:2.900
- 作者:
Dan Goldwasser;Dan Roth - 通讯作者:
Dan Roth
Set-Aligning Fine-tuning Framework for Document-level Event Temporal Graph Generation
用于文档级事件时间图生成的集合对齐微调框架
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Igor Melnyk;Pierre L. Dognin;Payel Das;Qiang Ning;Sanjay Subramanian;Dan Roth;Ben Zhou;Zhili Feng;Haoruo Peng;Colin Raffel;Noam M. Shazeer;A. Roberts;K. Lee;Sharan Narang;Michael Matena;Yanqi;Wei Zhou;J. LiPeter;Liu;Xinyu Wang;Lin Gui;Yulan He. 2023;Document - 通讯作者:
Document
MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding
MuirBench:强大的多图像理解的综合基准
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Fei Wang;Xingyu Fu;James Y. Huang;Zekun Li;Qin Liu;Xiaogeng Liu;Mingyu Derek Ma;Nan Xu;Wenxuan Zhou;Kai Zhang;Tianyi Yan;W. Mo;Hsiang;Pan Lu;Chunyuan Li;Chaowei Xiao;Kai;Dan Roth;Sheng Zhang;Hoifung Poon;Muhao Chen - 通讯作者:
Muhao Chen
Devil's Advocate: Anticipatory Reflection for LLM Agents
魔鬼代言人:法学硕士代理人的预期反思
- DOI:
10.48550/arxiv.2405.16334 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Haoyu Wang;Tao Li;Zhiwei Deng;Dan Roth;Yang Li - 通讯作者:
Yang Li
Dan Roth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Roth', 18)}}的其他基金
Collaborative Research: III: Small: Robust Learning and Inference Protocols for Mitigating Information Pollution
合作研究:III:小型:用于减轻信息污染的鲁棒学习和推理协议
- 批准号:
2135581 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Integrated Social History Environment for Research (ISHER)-Digging into Social Unrest
综合社会历史研究环境(ISHER)——深入挖掘社会动荡
- 批准号:
1209359 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
ITR-(ASE+ECS)-(soc+sim+int)-Natural Language Processing Technology for Guided Study of Bioinformatics
ITR-(ASE ECS)-(soc sim int)-引导生物信息学研究的自然语言处理技术
- 批准号:
0428472 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Learning Coherent Concepts: Theory and Applications to Natural Language
职业:学习连贯的概念:自然语言的理论和应用
- 批准号:
9984168 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Learning to Perform Knowlege Intensive Inferences
学习执行知识密集型推理
- 批准号:
9801638 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
SoD-HCER: Comprehensibility as a Design Criterion
SoD-HCER:可理解性作为设计标准
- 批准号:
0613919 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Sod-HCER: Designing the Undesignable
Sod-HCER:设计不可设计的东西
- 批准号:
0613162 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
SoD-HCER: Evaluation of Complex Designs--A Comparative Study
SoD-HCER:复杂设计的评估——比较研究
- 批准号:
0613601 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
SoD-HCER: Using Non-Linear Negotiation to Enable the Design of Robust Open Software Systems
SoD-HCER:使用非线性协商实现鲁棒开放软件系统的设计
- 批准号:
0613819 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
SoD-HCER: Testing Designs and Designing Tests
SoD-HCER:测试设计和设计测试
- 批准号:
0613793 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
SoD-HCER: Contextualized Design Education for Professionals from Non-Computing Disciplines
SoD-HCER:针对非计算学科专业人士的情境化设计教育
- 批准号:
0613738 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
SoD-HCER: Collaborative Research: Using Market Forces to Improve the Design of Software
SoD-HCER:协作研究:利用市场力量改进软件设计
- 批准号:
0613805 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
SoD-HCER: Colloborative Research: Using Market Forces to Improve Design of Hardware
SoD-HCER:协作研究:利用市场力量改进硬件设计
- 批准号:
0613687 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
SoD-HCER: Incorporating Uncertainty in the Evaluation of Software Designs
SoD-HCER:将不确定性纳入软件设计评估中
- 批准号:
0613823 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant