Homeostatic Plasticity in A Neural Network: Conserved Output Via Variable Underlying Mechanisms
神经网络中的稳态可塑性:通过可变的底层机制保持输出
基本信息
- 批准号:0615160
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit. How different are neurons of the same class across animals, or within a given animal? How precisely must neurons constrain the values of their many membrane conductances for them to function correctly in the networks in which they are found? Theoretical work using computer models has argued that similar activity patterns, both at the single neuron level and at the network level, can arise from different combinations of correlated and compensating membrane and synaptic currents. Recent work has added biological evidence for this novel idea: levels of both membrane conductance and the expression of genes responsible for the proteins which allow current to flow across the cell membrane (ion channels) vary considerably in the same cell in different animals. These results suggest that different solutions exist to carry out the same function in neurons from different animals. The first goal of this proposal is to investigate the functional relationships between different ion channel proteins that lead to these various solutions. This will be accomplished by studying the expression of multiple ion channel genes simultaneously in single identified neurons in the stomatogastric ganglion of the crab, Cancer borealis. A detailed analysis of these expression patterns will determine relationships of channel expression and membrane currents in single cells. The ability of these conductances to balance and compensate for one another then will be tested using a combination of computational (theoretical) and biological experiments that alter endogenous membrane conductances and look for compensation by other currents. The second goal of this proposal is to understand the mechanisms of how consistent network output is maintained in the face of radically altered inputs. The rhythmic activity of the stomatogastric ganglion is dependent on descending input from other centers of the nervous system. The activity of the stomatogastric ganglion activity stops completely soon after these inputs are removed, but if one waits 2-3 days the rhythm recovers. This recovery may at least in part be the result of changes in the expression of ion channels that re-tune these networks to regain functional output. Experiments will be performed to investigate the underlying changes in neuronal properties that lead to this recovery of rhythm. Broader Implications. Previous work suggests that individual neurons use a combination of tuning rules to find combinations of conductance densities that allow them adequate performance in the networks in which they are found. Such homeostatic plasticity recently has become an area of increased attention because it has implications for the function of neural networks at all levels of the nervous system. Incorporation of undergraduate students into the conceptual and experimental activities has been and will continue to be an integral part of Dr. Schulz' professional efforts.
智力优势。 不同动物或同一动物体内的同类神经元有多大差异?神经元必须如何精确地限制它们的许多膜电导的值,才能在它们所在的网络中正确地发挥作用? 使用计算机模型的理论工作认为,在单个神经元水平和网络水平上,类似的活动模式可以由相关和补偿膜电流和突触电流的不同组合引起。最近的研究为这一新想法提供了生物学证据:在不同动物的同一细胞中,膜电导和负责允许电流流过细胞膜的蛋白质(离子通道)的基因表达水平差异很大。 这些结果表明,存在不同的解决方案来执行来自不同动物的神经元的相同功能。该提案的第一个目标是研究导致这些不同解决方案的不同离子通道蛋白之间的功能关系。这将通过研究多个离子通道基因的表达,同时在单一的识别神经元的螃蟹,巨蟹座的口胃神经节。对这些表达模式的详细分析将确定单细胞中通道表达和膜电流的关系。然后,将使用改变内源性膜电导并寻找其他电流补偿的计算(理论)和生物实验的组合来测试这些电导相互平衡和补偿的能力。这个建议的第二个目标是了解在输入发生根本变化的情况下,网络输出如何保持一致的机制。口胃神经节的节律性活动依赖于来自神经系统其他中心的下行输入。口胃神经节的活动在这些输入被移除后很快完全停止,但如果等待2-3天,节律恢复。 这种恢复可能至少部分是离子通道表达变化的结果,这些离子通道重新调节这些网络以恢复功能输出。将进行实验以研究导致这种节律恢复的神经元特性的潜在变化。更广泛的影响。 以前的研究表明,单个神经元使用一组调谐规则来寻找电导密度的组合,使它们在网络中具有足够的性能,这种稳态可塑性最近已经成为一个越来越受关注的领域,因为它对神经系统各个层次的神经网络功能都有影响。 将本科生纳入概念和实验活动已经并将继续成为舒尔茨博士专业努力的一个组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Schulz其他文献
White Paper: functionality and efficacy of wrist protectors in snowboarding—towards a harmonized international standard
白皮书:单板滑雪护腕的功能和功效——迈向统一的国际标准
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
F. Michel;K. Schmitt;R. Greenwald;K. Russell;F. I. Simpson;David Schulz;M. Langran - 通讯作者:
M. Langran
Accuracy of mixture item response theory models for identifying sample heterogeneity in patient-reported outcomes: a simulation study
用于识别患者报告结果中样本异质性的混合项目反应理论模型的准确性:模拟研究
- DOI:
10.1007/s11136-022-03169-0 - 发表时间:
2022 - 期刊:
- 影响因子:3.5
- 作者:
T. Sajobi;L. Lix;Lara B. Russell;David Schulz;Juxin Liu;B. Zumbo;R. Sawatzky - 通讯作者:
R. Sawatzky
In Vitro Biomechanical Testing of the Tube Knot.
管结的体外生物力学测试。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.8
- 作者:
Stephany Chang;F. Dong;Minette Lagman;Peggy L. Schmidt;Kristopher L Irizarry;David Schulz;M. Fahie - 通讯作者:
M. Fahie
David Schulz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Schulz', 18)}}的其他基金
Collaborative Research: Diversity of modulation and functional flexibility in small neuronal networks: An evolutionary and mechanistic approach
合作研究:小神经元网络中调制的多样性和功能灵活性:进化和机械方法
- 批准号:
2128484 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Diversity of modulation and functional flexibility in small neuronal networks: An evolutionary and mechanistic approach
合作研究:小神经元网络中调制的多样性和功能灵活性:进化和机械方法
- 批准号:
1856370 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
MCA Pilot PUI: Neural Signaling and Mechanisms Underlying Sensory Integration and Plasticity
MCA Pilot PUI:感觉统合和可塑性背后的神经信号和机制
- 批准号:
2322317 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Neural recycling and plasticity in computer programming expertise
计算机编程专业知识中的神经回收和可塑性
- 批准号:
2318685 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Co-engineering Hebbian and Homeostatic Plasticity Mechanisms to Induce Targeted Functional Neural Connectivity Changes
共同设计赫布和稳态可塑性机制以诱导有针对性的功能性神经连接变化
- 批准号:
10754414 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Anatomical, neural, and computational constraints on sensory cross-modal plasticity following early blindness
早期失明后感觉跨模态可塑性的解剖学、神经学和计算限制
- 批准号:
10570400 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Plasticity of spinal neural networks directly impacts motor control following peripheral nerve injury
脊髓神经网络的可塑性直接影响周围神经损伤后的运动控制
- 批准号:
10588691 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Organization of neural coding and plasticity in L2/3 of mouse S1 cortex
小鼠 S1 皮质 L2/3 的神经编码组织和可塑性
- 批准号:
10653516 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Neural Determinants of Age-Related Changes in Cross-Sensory Plasticity and Multisensory Integration Affecting Audiovisual Speech Perception
影响视听言语感知的跨感觉可塑性和多感觉整合的年龄相关变化的神经决定因素
- 批准号:
10675866 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Impairment Of Neural Plasticity And Adaptive Representations By Genetic Risk Factors For Schizophrenia
精神分裂症遗传风险因素对神经可塑性和适应性表征的损害
- 批准号:
MR/X010910/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
The role of epigenetic modifiers in regulating the developmental plasticity of cranial neural crest cells
表观遗传修饰剂在调节颅神经嵴细胞发育可塑性中的作用
- 批准号:
10805033 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Simultaneous observation of macroscopic and microscopic neural plasticity using a new imaging technique
使用新成像技术同时观察宏观和微观神经可塑性
- 批准号:
23K14219 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




