Tractable Approximations of Chance Constrained Optimization Problems

机会约束优化问题的易于处理的近似

基本信息

  • 批准号:
    0619977
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding to develop algorithms for optimization problems with chance constraints. Uncertainty is an integral part of planning and decision making in a wide variety of applications. The research will study decision models that involve the possibility of a rare but costly event. A novel approach will be applied to chance constrained optimization problems, where computationally intractable chance constraints are approximated by efficiently computable convex constraints, thus ending up with an efficiently solvable approximating problems. The approach is especially attractive when the approximation is safe, in the sense that its feasible set is contained in the feasible set of the chance constrained problem, so that every feasible solution of the approximation is feasible for the original problem. Safe tractable approximations make it possible to treat chance constraints in a computationally efficient and reliable fashion; in numerous applications, especially large scale ones, these advantages significantly outweigh the intrinsic shortcoming of the approach -- its conservatism.If successful, the research will result in an in-depth investigation of safe tractable approximations of convex problems with stochastic data. It will enhance the building and processing of mathematical models of decision making, and will extend significantly the scope and the performance of computational tools supporting real-life decision making, thus improving its quality. The research will also result in improved algorithms for difficult combinatorial optimization problems. Applications of the research arise in areas such as manufacturing, transportation logistics, and financial engineering. In general, the research will contribute to the computational tools and methodologies available for stochastic optimization problems.
该补助金提供资金用于开发机会约束优化问题的算法。 不确定性是各种应用中规划和决策的组成部分。该研究将研究涉及罕见但代价高昂的事件的可能性的决策模型。 一种新的方法将被应用到机会约束优化问题,其中计算上难以处理的机会约束近似有效可计算的凸约束,从而结束了一个有效可解的近似问题。 该方法是特别有吸引力的近似是安全的,在这个意义上,它的可行集包含在机会约束问题的可行集,使每个可行的解决方案的近似是可行的原始问题。安全易处理的近似使得有可能处理机会约束的计算效率和可靠的方式,在许多应用中,特别是大规模的,这些优点显着超过固有的缺点的方法-它的conservatis.If成功的,研究将导致在深入调查的安全易处理的近似凸问题的随机数据。 它将加强决策数学模型的建立和处理,并将大大扩展支持现实生活决策的计算工具的范围和性能,从而提高其质量。 这项研究还将导致困难的组合优化问题的改进算法。 该研究的应用出现在制造业,运输物流和金融工程等领域。 在一般情况下,研究将有助于随机优化问题的计算工具和方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arkadi Nemirovski其他文献

Verifiable conditions of ℓ 1-recovery for sparse signals with sign restrictions
  • DOI:
    10.1007/s10107-010-0418-y
  • 发表时间:
    2010-10-19
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Anatoli Juditsky;Fatma Kılınç Karzan;Arkadi Nemirovski
  • 通讯作者:
    Arkadi Nemirovski
Nonparametric denoising signals of unknown local structure, II: Nonparametric function recovery
  • DOI:
    10.1016/j.acha.2010.01.003
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anatoli Juditsky;Arkadi Nemirovski
  • 通讯作者:
    Arkadi Nemirovski
On verifiable sufficient conditions for sparse signal recovery via ℓ 1 minimization
  • DOI:
    10.1007/s10107-010-0417-z
  • 发表时间:
    2010-10-20
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Anatoli Juditsky;Arkadi Nemirovski
  • 通讯作者:
    Arkadi Nemirovski
Randomized first order algorithms with applications to ℓ 1-minimization
  • DOI:
    10.1007/s10107-012-0575-2
  • 发表时间:
    2012-07-25
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Anatoli Juditsky;Fatma Kılınç Karzan;Arkadi Nemirovski
  • 通讯作者:
    Arkadi Nemirovski
Foreword: special issue on nonsmooth optimization and applications
  • DOI:
    10.1007/s10107-007-0153-1
  • 发表时间:
    2007-07-11
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Boris Mordukhovich;Arkadi Nemirovski;Yurii Nesterov
  • 通讯作者:
    Yurii Nesterov

Arkadi Nemirovski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arkadi Nemirovski', 18)}}的其他基金

CIF: Small: Statistical Inference via Convex Optimization
CIF:小:通过凸优化进行统计推断
  • 批准号:
    1523768
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Control of Magnetic Chemotherapy
合作研究:磁化疗的建模和控制
  • 批准号:
    1262063
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design of Efficient Saddle Point Algorithms for Large-scale/Complex Geometry Convex Optimization
大规模/复杂几何凸优化的高效鞍点算法设计
  • 批准号:
    1232623
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
  • 批准号:
    EP/Z530657/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
  • 批准号:
    2239234
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Complexity of quantum many-body systems: learnability, approximations, and entanglement
职业:量子多体系统的复杂性:可学习性、近似和纠缠
  • 批准号:
    2238836
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Density Functional Theory of Molecular Fragments: Strong Electron Correlation Beyond Density Functional Approximations
分子片段的密度泛函理论:超越密度泛函近似的强电子相关性
  • 批准号:
    2306011
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
  • 批准号:
    2405605
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
  • 批准号:
    2247334
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Gradient approximations and Hessian approximations: theory, algorithms and applications
梯度近似和 Hessian 近似:理论、算法和应用
  • 批准号:
    559838-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
  • 批准号:
    RGPIN-2022-03600
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations
非线性非局部流体方程的动力学和非耗散近似
  • 批准号:
    2204614
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了